During five-axis machining of impeller, the excessive local interference avoidance leads to inconsistency of cutter posture, low quality of machined surface and increase of processing time. Therefore, in order to impr...During five-axis machining of impeller, the excessive local interference avoidance leads to inconsistency of cutter posture, low quality of machined surface and increase of processing time. Therefore, in order to improve the efficiency of five-axis machining of impellers, it is necessary to minimize the cutter posture changes and create a continuous tool path while avoiding interference. By using an MC-space algorithm for interference avoidance, an MB-spline algorithm for continuous control was intended to create a five-axis machining tool path with excellent surface quality and economic feasibility. A five-axis cutting experiment was performed to verify the effectiveness of the continuity control. The result shows that the surface shape with continuous method is greatly improved, and the surface roughness is generally favorable. Consequently, the effectiveness of the suggested method is verified by identifying the improvement of efficiency of five-axis machining of an impeller in aspects of surface quality and machining time.展开更多
The motivation of this work is to obtain single PI/PID tuning formula for different types of processes with enhanced disturbance rejection performance. The proposed tuning formula consistently gives better performance...The motivation of this work is to obtain single PI/PID tuning formula for different types of processes with enhanced disturbance rejection performance. The proposed tuning formula consistently gives better performance in comparison to several well-known methods at the same degree of robustness for stable, integrating and unstable processes. For the selection of the closed-loop time constant(τc), a guideline is provided over a broad range of time-delay/time-constant ratios on the basis of the peak of maximum sensitivity(Ms). An analysis has been performed for the uncertainty margin with the different process parameters for the robust controller design. It gives the guideline of the Ms-value settings for the PI controller designs based on the process parameters uncertainty. Furthermore, a relationship has been developed between Ms-value and uncertainty margin with the different process parameters(k, τ and θ). Simulation study has been conducted for the broad class of processes and the controllers are tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison.展开更多
The controlled volume method of operation is especially suitable for large-scale water delivery canal system with complex operation requirements. An operating simulation model based on the storage volume control metho...The controlled volume method of operation is especially suitable for large-scale water delivery canal system with complex operation requirements. An operating simulation model based on the storage volume control method for multi-reach canal system in series was established. In allusion to the deficiency of existing controlled volume algorithm, the improved controlled volume algorithm of the whole canal pools was proposed, and the simulation results indicated that the storage volume and water level of each canal pool could be accurately controlled after the improved algorithm had been adopted. However, for some typical discharge demand operating conditions, if the previously mentioned algorithm was adopted, then it certainly would cause some unnecessary gate adjustments, and consequently the disturbed canal pools would be increased. Therefore, the idea of controlled volume operation method of continuous canal pools was proposed, and corresponding algorithm was designed. Through simulating practical project, the results indicated that the new controlled volume algorithm proposed for typical operating conditions could comparatively and obviously reduce the number of regulated check gates and disturb canal pools for some typical discharge demand operating conditions, thus the control efficiency of canal system could be improved.展开更多
Spherical cobalt carbonate with high tap density, good crystallization and uniform particle size was prepared by controlled chemical crystal method using cobalt chloride and ammonium bicarbonate as cobalt source and p...Spherical cobalt carbonate with high tap density, good crystallization and uniform particle size was prepared by controlled chemical crystal method using cobalt chloride and ammonium bicarbonate as cobalt source and precipitator. The effects of pH value and reaction time on crystallization and physical properties of cobalt carbonate were studied. The results show that the key factors influencing the preparation process of spherical cobalt carbonate with high tap density and good crystallization are how to control pH value (7.25±0.05) and keep some reaction time (about 10 h). Co4O3 was prepared by sintering spherical morphology CoCO3 samples at varied temperatures. The results show that as the decomposition temperature increases, the as-obtained Co4O3 products with porous structure transform into polyhedral structure with glazed surface, and simultaneously the cobalt content and tap density increase. However, the specific surface area shows a trend of decrease.展开更多
The static performance of inflatable structures has been well studied and the dynamic deployment simulation has received much attention. However, very few studies focus on its deflation behavior. Although there are se...The static performance of inflatable structures has been well studied and the dynamic deployment simulation has received much attention. However, very few studies focus on its deflation behavior. Although there are several dynamic finite element algorithms that can be applied to the deflation simulation, their computation costs are expensive, especially for large scale structures. In this work, a simple method based on classic thermodynamics and the analytical relationship between air and membrane was proposed to efficiently analyze the air state variables under the condition of ventilation. Combined with failure analysis of static bearing capacity, a fast incremental analytical method was presented to predict both elastic and post wrinkling deflation process of inflatable structures. Comparisons between simplified analysis, dynamic finite element simulation, and a full-scale experimental test are presented and the suitability of this simple method for solving the air state and predicting the deflation behavior of inflatable structures is proved.展开更多
基金Work supported by the Second Stage of Brain Korea 21 ProjectsProject(RTI04-01-03) supported by the Regional Technology Innovation Program of the Ministry of Knowledge Economy (MKE) of Korea
文摘During five-axis machining of impeller, the excessive local interference avoidance leads to inconsistency of cutter posture, low quality of machined surface and increase of processing time. Therefore, in order to improve the efficiency of five-axis machining of impellers, it is necessary to minimize the cutter posture changes and create a continuous tool path while avoiding interference. By using an MC-space algorithm for interference avoidance, an MB-spline algorithm for continuous control was intended to create a five-axis machining tool path with excellent surface quality and economic feasibility. A five-axis cutting experiment was performed to verify the effectiveness of the continuity control. The result shows that the surface shape with continuous method is greatly improved, and the surface roughness is generally favorable. Consequently, the effectiveness of the suggested method is verified by identifying the improvement of efficiency of five-axis machining of an impeller in aspects of surface quality and machining time.
基金the support provided by King Abdulaziz City for Science and Technology (KACST) through the "KACST Annual Program" at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through project number AT-32-41
文摘The motivation of this work is to obtain single PI/PID tuning formula for different types of processes with enhanced disturbance rejection performance. The proposed tuning formula consistently gives better performance in comparison to several well-known methods at the same degree of robustness for stable, integrating and unstable processes. For the selection of the closed-loop time constant(τc), a guideline is provided over a broad range of time-delay/time-constant ratios on the basis of the peak of maximum sensitivity(Ms). An analysis has been performed for the uncertainty margin with the different process parameters for the robust controller design. It gives the guideline of the Ms-value settings for the PI controller designs based on the process parameters uncertainty. Furthermore, a relationship has been developed between Ms-value and uncertainty margin with the different process parameters(k, τ and θ). Simulation study has been conducted for the broad class of processes and the controllers are tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison.
基金Supported by the Governmental Public Industry Research Special Funds for Projects of MWR (200901002,200901003,200901006)Key Projects in the National Science & Technology Pillar Program During the 11th Five-year Plan Period of China (2006BAB04A12)
文摘The controlled volume method of operation is especially suitable for large-scale water delivery canal system with complex operation requirements. An operating simulation model based on the storage volume control method for multi-reach canal system in series was established. In allusion to the deficiency of existing controlled volume algorithm, the improved controlled volume algorithm of the whole canal pools was proposed, and the simulation results indicated that the storage volume and water level of each canal pool could be accurately controlled after the improved algorithm had been adopted. However, for some typical discharge demand operating conditions, if the previously mentioned algorithm was adopted, then it certainly would cause some unnecessary gate adjustments, and consequently the disturbed canal pools would be increased. Therefore, the idea of controlled volume operation method of continuous canal pools was proposed, and corresponding algorithm was designed. Through simulating practical project, the results indicated that the new controlled volume algorithm proposed for typical operating conditions could comparatively and obviously reduce the number of regulated check gates and disturb canal pools for some typical discharge demand operating conditions, thus the control efficiency of canal system could be improved.
文摘Spherical cobalt carbonate with high tap density, good crystallization and uniform particle size was prepared by controlled chemical crystal method using cobalt chloride and ammonium bicarbonate as cobalt source and precipitator. The effects of pH value and reaction time on crystallization and physical properties of cobalt carbonate were studied. The results show that the key factors influencing the preparation process of spherical cobalt carbonate with high tap density and good crystallization are how to control pH value (7.25±0.05) and keep some reaction time (about 10 h). Co4O3 was prepared by sintering spherical morphology CoCO3 samples at varied temperatures. The results show that as the decomposition temperature increases, the as-obtained Co4O3 products with porous structure transform into polyhedral structure with glazed surface, and simultaneously the cobalt content and tap density increase. However, the specific surface area shows a trend of decrease.
基金Projects(51178263,51378307)supported by the National Natural Science Foundation of China
文摘The static performance of inflatable structures has been well studied and the dynamic deployment simulation has received much attention. However, very few studies focus on its deflation behavior. Although there are several dynamic finite element algorithms that can be applied to the deflation simulation, their computation costs are expensive, especially for large scale structures. In this work, a simple method based on classic thermodynamics and the analytical relationship between air and membrane was proposed to efficiently analyze the air state variables under the condition of ventilation. Combined with failure analysis of static bearing capacity, a fast incremental analytical method was presented to predict both elastic and post wrinkling deflation process of inflatable structures. Comparisons between simplified analysis, dynamic finite element simulation, and a full-scale experimental test are presented and the suitability of this simple method for solving the air state and predicting the deflation behavior of inflatable structures is proved.