Recent progress of the preparation and applications of superparamagnetic iron oxide(SPIO) clusters as magnetic resonance imaging(MRI) probes is reviewed with regard to their applications in labeling and tracking c...Recent progress of the preparation and applications of superparamagnetic iron oxide(SPIO) clusters as magnetic resonance imaging(MRI) probes is reviewed with regard to their applications in labeling and tracking cells in vivo, in diagnosis of cardiovascular diseases and tumors, and in drug delivery systems. Magnetic nanoparticles(NPs), especially SPIO nanoparticles, have long been used as MRI contrast agents and as an advantageous nanoplatform for drug delivery,taking advantage of their unique magnetic properties and ability to function at the molecular and cellular levels. Due to advances in nanotechnology, various means to control SPIO NPs' size, composition, magnetization and relaxivity have been developed, as well as ways to usefully modify their surface. Recently, self-assembly of SPIO NP clusters in particulate carriers — such as polymeric micelles, vesicles, liposomes, and layer-by-layer(Lb L) capsules — have been widely studied for application as ultrasensitive MRI probes, owing to their remarkably high spin–spin(T2) relaxivity and convenience for further functionalization.展开更多
Objective: To analyze the non-periodic, unstable and even chaotic echoes scattered from microbubbles which are extremely sensitive and may easily collapse, fragment or shrink when ultrasound contrast agents are expose...Objective: To analyze the non-periodic, unstable and even chaotic echoes scattered from microbubbles which are extremely sensitive and may easily collapse, fragment or shrink when ultrasound contrast agents are exposed to ultrasound (US) irradiation. Methods: The combined time-frequency analysis was applied to the original signals instead of the traditional Fourier spectral analysis technique. Results: The results obtained from simulation as well as experiment showed that the subharmonic, 2nd harmonic and ultra harmonic of the microbubbles occurred during the oscillation and varied with time. The dependence on the incident ultrasonic amplitude and microbubble parameters were established. Conclusion: The transient echoes backscattered from the ultrasound agent in the evaluation of the blood perfusion can be analyzed thoroughly by the technique of combined-frequency analysis and the time detail of the frequency contents can be revealed.展开更多
The purpose of this study was to determine the efficacy of using an ultrasound contrast agent(levovist)to enhance the color Doppler imaging of liver neoplasms.Thirty patients with hepatic tu...The purpose of this study was to determine the efficacy of using an ultrasound contrast agent(levovist)to enhance the color Doppler imaging of liver neoplasms.Thirty patients with hepatic tumors were enrolled in this study.After intravenous administration of levovist,the color Doppler signals of normal hepatic vessels were enhanced.In various hepatic tumors,the different patterns of tumor vascularity were observed,which had not been demonstrated in conventional non contrast color Doppler imaging.In 11 of 16 patients with hepatocarcinoma,additional color Doppler signals were observed in the central part of the tumors.On the contrary,3 patients with metastatic liver lesions the enhanced color Doppler signals appear only at the peripheral of tumors.A typical rim like color enhancement was seen in 2 of the 3 cases.In six patients with hepatic hemangiomas contrast enhanced color Doppler imaging demonstrated the blood vessels at the margin of the neoplasms.Contrast enhanced color Doppler imaging improves the visualization of the hepatic neoplasm vascularity.This technique holds great promise for detecting small liver tumors and differentiating hepatic neoplasms.展开更多
Modelling and biomedical applications of ultrasound contrast agent (UCA) microbubbles have attracted a great deal of attention. In this review, we summarize a series of researches done in our group, including (i) ...Modelling and biomedical applications of ultrasound contrast agent (UCA) microbubbles have attracted a great deal of attention. In this review, we summarize a series of researches done in our group, including (i) the development of an all-in-one solution of characterizing coated bubble parameters based on the light scattering technique and flow cytometry; (ii) a novel bubble dynamic model that takes into consideration both nonlinear shell elasticity and viscosity to eliminate the dependences of bubble shell parameters on bubble size; (iii) the evaluation of UCA inertial cavitation threshold and its relationship with shell parameters; and (iv) the investigations of transfection efficiency and the reduction of cytotoxicity in gene delivery facilitated by UCAs excited by ultrasound exposures.展开更多
Objeelive To prepare and characterize polyelectrolyte multilayer film coated microbubbles for use as ultrasound contrast agent (UCA) and evaluate its effects in ultrasonic imaging on normal rabbit's fiver parenchym...Objeelive To prepare and characterize polyelectrolyte multilayer film coated microbubbles for use as ultrasound contrast agent (UCA) and evaluate its effects in ultrasonic imaging on normal rabbit's fiver parenchyma. Methods Perfluorocarbon (PFC)-containing microbubbles (ST68-PFC) were prepared by sonication based on suffactant ( Span 60 and Tween 80). Subsequently, the resulting ST68-PFC microbubbles were coated using oppositely charged polyelectrolytes by microbubble-templated layer-by-layer self-assembly technique via electrostatic interaction. The enhancement effects in ultrasonic imaging on normal rabbit's liver parenchyma were assessed. Results The obtained microbubbles exhibited a narrow size distribution. The polyelectrolytes were successfully assembled onto the surface of ST68-PFC microbubbles. In vivo experiment showed that polyelectrolyte multilayer film coated UCA effectively enhanced the imaging of rabbit's liver parenchyma. Conclusions The novel microbubbles UCA coated with polyelectrolyte multilayer, when enabled more function, has no obvious difference in enhancement effects compared with the pre-modified microbubbles. The polymers with chemically active groups ( such as amino group and carboxyl group) can be used as the outermost layer for attachment of targeting ligands onto microbubbles, allowing selective targeting of the microbubbles to combine with desired sites.展开更多
Objective: To evaluate the value of oral Gd-DTPA as a negative contrast agent during magnetic resonance cholangiopancreatography (MRCP) to eliminate the high signals of the gastrointestinal tract. Methods: To select t...Objective: To evaluate the value of oral Gd-DTPA as a negative contrast agent during magnetic resonance cholangiopancreatography (MRCP) to eliminate the high signals of the gastrointestinal tract. Methods: To select the optimal concentration of oral Gd-DTPA for MRCP, a phantom study was performed followed by clinical trial in 15 cases undergoing MRCP before and after oral Gd-DTPA (in a total volume of 250 ml 1∶5 diluted Gd-DTPA, 1.488 g/L). MRCP images were acquired using two-dimensional single slice fast spin-echo (SSTSE) sequence and half-Fourier acquisition single slice fast spin-echo (HASTE) sequence. Results: The phantom study showed that the 1∶5 diluted oral Gd-DTPA was best in decreasing the signal intensity both in T2-weighted imaging (59.5%) and in HASTE sequence (82.45%). The high signal intensity of the stomach and intestinal fluid was completely suppressed in all the cases. The depictions of the common bile duct and pancreatic duct were markedly improved by using the oral contrast agent (P<0.05). Conclusion: Oral Gd-DTPA is effective and safe for eliminating the high signal of the gastrointestinal tract to improve the depiction of the biliary system by MRCP.展开更多
Objective: To study on the preparation process of a new surfactant-based microbubble ultrasound contrast agent and to evaluate its contrast effects in vivo. Methods: Microbubble ultrasound contrast agent with three es...Objective: To study on the preparation process of a new surfactant-based microbubble ultrasound contrast agent and to evaluate its contrast effects in vivo. Methods: Microbubble ultrasound contrast agent with three ester surfactants and other additives as its shell materials was prepared by sonication. Sulfur hexafluoride was adopted as the inner gas of the microbubbles. New methods through the combination of optical microscope and some softwares were used to measure the size distribution and the concentration of the microbubbles. Some parameters such as the pH value of the phosphate buffer, quantity of the carboxylic methyl cellulose in the shell materials, selection of the ultrasound power and process time, were studied. Six hybirded dogs were used to verify the in vivo contrast imaging of the contrast agent using second harmonic power Doppler modality. Safety and persistent time of the agent inner animal body were also investigated. Results: Ultrasound contrast agent prepared in the experiment had an average microbubble diameter of 3.95 microns with concentration of 3.6×109 microbubbles per millilitre. Carboxylic methyl cellulose was found as an important shell material which had obviously effect on the microbubble stability and production even with a little quantity. The buffer pH value also had a key role on the microbubble formation and the final production. When the buffer pH value reached 7.4, there was no microbubble produced. Under the approximate microbubble production, process time could be shorten with the increasing ultrasound power. The obvious ultrasound contrast imaging effects were detected in the dog's heart chamber and liver as well as kidney using only one millilitre agent when diluted. The agent was found safe to the dogs. At the same time, persistent time of the agent was found over 20 min in the dog's body. Conclusion: The new ultrasound contrast agent prepared in the experiment has high microbubble production and concentration, narrow microbubble size distribution ranging in several microns, well stability, little dosage needed in the contrast, well safety to the dogs and long persistent time, obvious contrast imaging effect in the dog's heart chamber, kidney and liver. These experiment data indicate that the new ultrasound contrast agent with three ester surfactants and carboxylic methyl cellulose as its main shell materials can be further developed for clinical purposes.展开更多
Objective: To present a self-developed experimental system for basic studies of blood perfusion imaging and time-intensity evaluating based on ultrasound contrast agent. Methods : The experimental system performed t...Objective: To present a self-developed experimental system for basic studies of blood perfusion imaging and time-intensity evaluating based on ultrasound contrast agent. Methods : The experimental system performed the image reconstruction and time-intensity processing with radio frequency signals. The system was comprised of ultra-high speed hardware data acquisition interface and low computational cost algorithms. The self-made contrast agent ,blood mimic phantom and capillary phantom model were used to validate the experimental system. Results: The images acquired in blood phantoms with linear-array and curve-array transducers were given. The time-intensity curves corresponding to selected region of interestsequence were demonstrated. It was also shown the time-intensity based decay curves and a decay of ultrasound contrast agent under different ultrasound powers. Conclusion: Several suited from two in vitro phantom models show that the experimental system can be used to f blood perfusion and further clinical studies of microvasculature perfusion.展开更多
Transdermal drug delivery (TDD) can effectively bypass the first-pass effect. In this paper, ultrasound-facilitated TDD on fresh porcine skin was studied under various acoustic parameters, including frequency, ampli...Transdermal drug delivery (TDD) can effectively bypass the first-pass effect. In this paper, ultrasound-facilitated TDD on fresh porcine skin was studied under various acoustic parameters, including frequency, amplitude, and exposure time. The delivery of yellow-green fluorescent nanoparticles and high molecular weight hyaluronic acid (HA) in the skin samples was observed by laser confocal microscopy and ultraviolet spectrometry, respectively. The results showed that, with the application of ultrasound exposures, the permeability of the skin to these markers (e.g., their penetration depth and concentration) could be raised above its passive diffusion permeability. Moreover, ultrasound-facilitated TDD was also tested with/without the presence of ultrasound contrast agents (UCAs). When the ultrasound was applied without UCAs, low ultrasound frequency will give a better drug delivery effect than high frequency, but the penetration depth was less likely to exceed 200 p.m. However, with the help of the ultrasound-induced microbubble cavitation effect, both the penetration depth and concentration in the skin were significantly enhanced even more. The best ultrasound-facilitated TDD could be achieved with a drug penetration depth of over 600 p.m, and the penetration concentrations of fluorescent nanoparticles and HA increased up to about 4-5 folds. In order to get better understanding of ultrasound-facilitated TDD, scanning electron microscopy was used to examine the surface morphology of skin samples, which showed that the skin structure changed greatly under the treatment of ultrasound and UCA. The present work suggests that, for TDD applications (e.g., nanoparticle drug carriers, transdermal patches and cosmetics), protocols and methods presented in this paper are potentially useful.展开更多
The dynamic behaviour of SonoVue microbubbles, a new generation ultrasound contrast agent, is investigated in real time with light scattering method. Highly diluted SonoVue microbubbles are injected into a diluted gel...The dynamic behaviour of SonoVue microbubbles, a new generation ultrasound contrast agent, is investigated in real time with light scattering method. Highly diluted SonoVue microbubbles are injected into a diluted gel made of xanthan gum and water. The responses of individual SonoVue bubbles to driven ultrasound pulses are measured. Both linear and nonlinear bubble oscillations are observed and the results suggest that SonoVue microbubbles can generate strong nonlinear responses. By fitting the experimental data of individual bubble responses with Sarkar's model, the shell coating parameter of the bubbles and dilatational viscosity is estimated to be 7.0 nm-s-Pa.展开更多
Mesoporous MCM-41 molecular sieves containing f-block transition elements(gadolinium) with various Si/Gd ratios(50,75 and 100) were synthesised by a hydrothermal method.Their mesoporous structure was confirmed by ...Mesoporous MCM-41 molecular sieves containing f-block transition elements(gadolinium) with various Si/Gd ratios(50,75 and 100) were synthesised by a hydrothermal method.Their mesoporous structure was confirmed by X-ray diffraction,nitrogen sorption studies,thermogravimetric analysis,scanning and transmission electron microscopy.The local environment of Gd in the material was studied by electron paramagnetic resonance.The compatibility of the catalyst for the synthesis of uniform diameter CNTs by varying the temperature from 400 to 650°C with fixed flow rates of N2 and C2H2(140 ml/min and 40 ml/min,respectively).The product is mostly metal containing thin MWCNTs with diameter of 1020 nm.Characterisation shows that a combination of Gd-MCM-41(100) catalyst gives a high yield of high quality MWCNTs under optimum growth conditions.展开更多
Theoretical studies on the multi-bubble interaction are crucial for the in-depth understanding of the mechanism behind the applications of ultrasound contrast agents (UCAs) in clinics. A two-dimensional (2D) axisy...Theoretical studies on the multi-bubble interaction are crucial for the in-depth understanding of the mechanism behind the applications of ultrasound contrast agents (UCAs) in clinics. A two-dimensional (2D) axisymmetric finite element model (FEM) is developed here to investigate the bubble-bubble interactions for UCAs in a fluidic environment. The effect of the driving frequency and the bubble size on the bubble interaction tendency (viz., bubbles' attraction and repulsion), as well as the influences of bubble shell mechanical parameters (viz., surface tension coefficient and viscosity coefficient) are discussed. Based on FEM simulations, the temporal evolution of the bubbles' radii, the bubble-bubble distance, and the distribution of the velocity field in the surrounding fluid are investigated in detail. The results suggest that for the interacting bubble-bubble couple, the overall translational tendency should be determined by the relationship between the driving frequency and their resonance frequencies. When the driving frequency falls between the resonance frequencies of two bubbles with different sizes, they will repel each other, otherwise they will attract each other. For constant acoustic driving parameters used in this paper, the changing rate of the bubble radius decreases as the viscosity coefficient increases, and increases first then decreases as the bubble shell surface tension coefficient increases, which means that the strength of bubble-bubble interaction could be adjusted by changing the bubble shell visco-elasticity coefficients. The current work should provide a powerful explanation for the accumulation observations in an experiment, and provide a fundamental theoretical support for the applications of UCAs in clinics.展开更多
Objective: To investigate the potential of superparamagnetic iron oxide particles (SPIO) in MR imaging for the differentiation between hyperplastic and metastatic lymph node. Methods: Animal models of malignant lymph ...Objective: To investigate the potential of superparamagnetic iron oxide particles (SPIO) in MR imaging for the differentiation between hyperplastic and metastatic lymph node. Methods: Animal models of malignant lymph node metastasis were established in 6 New-Zealand rabbits by a unilateral intra-muscular injection of VX2 carcinoma cells, and models of hyperplastic lymph nodes were induced in another 6 rabbits by a unilateral intra-muscular injection of egg yolk emulsion. MR images of the lymph nodes were obtained before and 12 h after interstitial injection of SPIO. Image results were analyzed and compared with pathological findings. Results: On unenhanced images, the signal intensity of hyperplastic and metastatic lymph nodes did not differ significantly. After administration of SPIO, the signal intensity of both hyperplastic and metastatic lymph nodes remained unchanged on T1-weighted SE images. On T2-weighted SE images, the signal intensity of hyperplastic lymph nodes decreased heterogeneously, while that of all metastatic ones remained unchanged. On T2-weighted GRE images, the signal intensity of hyperplastic lymph nodes decreased significantly and homogeneously, while that of 4 metastatic ones remained unchanged and that of the rest 2 decreased heterogeneously. Conclusion: SPIO-enhanced MR imaging may enable the differentiation between the hyperplastic and metastatic lymph nodes.展开更多
基金Project supported by the National Key Basic Research Program of China(Grant No.2013CB933903)the National Natural Science Foundation of China(Grant Nos.20974065+2 种基金51173117and 50830107)the Scientific Research Start-up Fund of Kunming University of Science and Technology(Grant No.KKSY201305089)
文摘Recent progress of the preparation and applications of superparamagnetic iron oxide(SPIO) clusters as magnetic resonance imaging(MRI) probes is reviewed with regard to their applications in labeling and tracking cells in vivo, in diagnosis of cardiovascular diseases and tumors, and in drug delivery systems. Magnetic nanoparticles(NPs), especially SPIO nanoparticles, have long been used as MRI contrast agents and as an advantageous nanoplatform for drug delivery,taking advantage of their unique magnetic properties and ability to function at the molecular and cellular levels. Due to advances in nanotechnology, various means to control SPIO NPs' size, composition, magnetization and relaxivity have been developed, as well as ways to usefully modify their surface. Recently, self-assembly of SPIO NP clusters in particulate carriers — such as polymeric micelles, vesicles, liposomes, and layer-by-layer(Lb L) capsules — have been widely studied for application as ultrasensitive MRI probes, owing to their remarkably high spin–spin(T2) relaxivity and convenience for further functionalization.
文摘Objective: To analyze the non-periodic, unstable and even chaotic echoes scattered from microbubbles which are extremely sensitive and may easily collapse, fragment or shrink when ultrasound contrast agents are exposed to ultrasound (US) irradiation. Methods: The combined time-frequency analysis was applied to the original signals instead of the traditional Fourier spectral analysis technique. Results: The results obtained from simulation as well as experiment showed that the subharmonic, 2nd harmonic and ultra harmonic of the microbubbles occurred during the oscillation and varied with time. The dependence on the incident ultrasonic amplitude and microbubble parameters were established. Conclusion: The transient echoes backscattered from the ultrasound agent in the evaluation of the blood perfusion can be analyzed thoroughly by the technique of combined-frequency analysis and the time detail of the frequency contents can be revealed.
文摘The purpose of this study was to determine the efficacy of using an ultrasound contrast agent(levovist)to enhance the color Doppler imaging of liver neoplasms.Thirty patients with hepatic tumors were enrolled in this study.After intravenous administration of levovist,the color Doppler signals of normal hepatic vessels were enhanced.In various hepatic tumors,the different patterns of tumor vascularity were observed,which had not been demonstrated in conventional non contrast color Doppler imaging.In 11 of 16 patients with hepatocarcinoma,additional color Doppler signals were observed in the central part of the tumors.On the contrary,3 patients with metastatic liver lesions the enhanced color Doppler signals appear only at the peripheral of tumors.A typical rim like color enhancement was seen in 2 of the 3 cases.In six patients with hepatic hemangiomas contrast enhanced color Doppler imaging demonstrated the blood vessels at the margin of the neoplasms.Contrast enhanced color Doppler imaging improves the visualization of the hepatic neoplasm vascularity.This technique holds great promise for detecting small liver tumors and differentiating hepatic neoplasms.
基金Projects supported by the National Natural Science Foundation of China(Grant Nos.81127901,81227004,11374155,11274170,11274176,11474001,11474161,11474166,and 11674173)the National High-Technology Research and Development Program,China(Grant No.2012AA022702)Qing Lan Project of Jiangsu Province,China
文摘Modelling and biomedical applications of ultrasound contrast agent (UCA) microbubbles have attracted a great deal of attention. In this review, we summarize a series of researches done in our group, including (i) the development of an all-in-one solution of characterizing coated bubble parameters based on the light scattering technique and flow cytometry; (ii) a novel bubble dynamic model that takes into consideration both nonlinear shell elasticity and viscosity to eliminate the dependences of bubble shell parameters on bubble size; (iii) the evaluation of UCA inertial cavitation threshold and its relationship with shell parameters; and (iv) the investigations of transfection efficiency and the reduction of cytotoxicity in gene delivery facilitated by UCAs excited by ultrasound exposures.
基金Supported by the Program for New Century Excellent in University of China(30740061)the National Natural Science Foundation of China(30672001)
文摘Objeelive To prepare and characterize polyelectrolyte multilayer film coated microbubbles for use as ultrasound contrast agent (UCA) and evaluate its effects in ultrasonic imaging on normal rabbit's fiver parenchyma. Methods Perfluorocarbon (PFC)-containing microbubbles (ST68-PFC) were prepared by sonication based on suffactant ( Span 60 and Tween 80). Subsequently, the resulting ST68-PFC microbubbles were coated using oppositely charged polyelectrolytes by microbubble-templated layer-by-layer self-assembly technique via electrostatic interaction. The enhancement effects in ultrasonic imaging on normal rabbit's liver parenchyma were assessed. Results The obtained microbubbles exhibited a narrow size distribution. The polyelectrolytes were successfully assembled onto the surface of ST68-PFC microbubbles. In vivo experiment showed that polyelectrolyte multilayer film coated UCA effectively enhanced the imaging of rabbit's liver parenchyma. Conclusions The novel microbubbles UCA coated with polyelectrolyte multilayer, when enabled more function, has no obvious difference in enhancement effects compared with the pre-modified microbubbles. The polymers with chemically active groups ( such as amino group and carboxyl group) can be used as the outermost layer for attachment of targeting ligands onto microbubbles, allowing selective targeting of the microbubbles to combine with desired sites.
文摘Objective: To evaluate the value of oral Gd-DTPA as a negative contrast agent during magnetic resonance cholangiopancreatography (MRCP) to eliminate the high signals of the gastrointestinal tract. Methods: To select the optimal concentration of oral Gd-DTPA for MRCP, a phantom study was performed followed by clinical trial in 15 cases undergoing MRCP before and after oral Gd-DTPA (in a total volume of 250 ml 1∶5 diluted Gd-DTPA, 1.488 g/L). MRCP images were acquired using two-dimensional single slice fast spin-echo (SSTSE) sequence and half-Fourier acquisition single slice fast spin-echo (HASTE) sequence. Results: The phantom study showed that the 1∶5 diluted oral Gd-DTPA was best in decreasing the signal intensity both in T2-weighted imaging (59.5%) and in HASTE sequence (82.45%). The high signal intensity of the stomach and intestinal fluid was completely suppressed in all the cases. The depictions of the common bile duct and pancreatic duct were markedly improved by using the oral contrast agent (P<0.05). Conclusion: Oral Gd-DTPA is effective and safe for eliminating the high signal of the gastrointestinal tract to improve the depiction of the biliary system by MRCP.
基金Supported by the High Technology Research Development Program of China(863 Program,No.2001AA218031)and the National Natural Science Foundation of China(No.30270404).
文摘Objective: To study on the preparation process of a new surfactant-based microbubble ultrasound contrast agent and to evaluate its contrast effects in vivo. Methods: Microbubble ultrasound contrast agent with three ester surfactants and other additives as its shell materials was prepared by sonication. Sulfur hexafluoride was adopted as the inner gas of the microbubbles. New methods through the combination of optical microscope and some softwares were used to measure the size distribution and the concentration of the microbubbles. Some parameters such as the pH value of the phosphate buffer, quantity of the carboxylic methyl cellulose in the shell materials, selection of the ultrasound power and process time, were studied. Six hybirded dogs were used to verify the in vivo contrast imaging of the contrast agent using second harmonic power Doppler modality. Safety and persistent time of the agent inner animal body were also investigated. Results: Ultrasound contrast agent prepared in the experiment had an average microbubble diameter of 3.95 microns with concentration of 3.6×109 microbubbles per millilitre. Carboxylic methyl cellulose was found as an important shell material which had obviously effect on the microbubble stability and production even with a little quantity. The buffer pH value also had a key role on the microbubble formation and the final production. When the buffer pH value reached 7.4, there was no microbubble produced. Under the approximate microbubble production, process time could be shorten with the increasing ultrasound power. The obvious ultrasound contrast imaging effects were detected in the dog's heart chamber and liver as well as kidney using only one millilitre agent when diluted. The agent was found safe to the dogs. At the same time, persistent time of the agent was found over 20 min in the dog's body. Conclusion: The new ultrasound contrast agent prepared in the experiment has high microbubble production and concentration, narrow microbubble size distribution ranging in several microns, well stability, little dosage needed in the contrast, well safety to the dogs and long persistent time, obvious contrast imaging effect in the dog's heart chamber, kidney and liver. These experiment data indicate that the new ultrasound contrast agent with three ester surfactants and carboxylic methyl cellulose as its main shell materials can be further developed for clinical purposes.
基金Supported by the National Natural Science Foundation of China(30270404)Specialized Research Fund for the Doctoral Program of Higher Education(2003069816)
文摘Objective: To present a self-developed experimental system for basic studies of blood perfusion imaging and time-intensity evaluating based on ultrasound contrast agent. Methods : The experimental system performed the image reconstruction and time-intensity processing with radio frequency signals. The system was comprised of ultra-high speed hardware data acquisition interface and low computational cost algorithms. The self-made contrast agent ,blood mimic phantom and capillary phantom model were used to validate the experimental system. Results: The images acquired in blood phantoms with linear-array and curve-array transducers were given. The time-intensity curves corresponding to selected region of interestsequence were demonstrated. It was also shown the time-intensity based decay curves and a decay of ultrasound contrast agent under different ultrasound powers. Conclusion: Several suited from two in vitro phantom models show that the experimental system can be used to f blood perfusion and further clinical studies of microvasculature perfusion.
基金Project partially supported by the National Natural Science Foundation of China(Grant Nos.81127901,81227004,81473692,81673995,11374155,11574156,11274170,11274176,11474001,11474161,11474166,and 11674173)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK2011812)+1 种基金the Fundamental Research Funds for the Central Universitiesthe National High-Tech Research and Development Program of China(Grant No.2012AA022702)
文摘Transdermal drug delivery (TDD) can effectively bypass the first-pass effect. In this paper, ultrasound-facilitated TDD on fresh porcine skin was studied under various acoustic parameters, including frequency, amplitude, and exposure time. The delivery of yellow-green fluorescent nanoparticles and high molecular weight hyaluronic acid (HA) in the skin samples was observed by laser confocal microscopy and ultraviolet spectrometry, respectively. The results showed that, with the application of ultrasound exposures, the permeability of the skin to these markers (e.g., their penetration depth and concentration) could be raised above its passive diffusion permeability. Moreover, ultrasound-facilitated TDD was also tested with/without the presence of ultrasound contrast agents (UCAs). When the ultrasound was applied without UCAs, low ultrasound frequency will give a better drug delivery effect than high frequency, but the penetration depth was less likely to exceed 200 p.m. However, with the help of the ultrasound-induced microbubble cavitation effect, both the penetration depth and concentration in the skin were significantly enhanced even more. The best ultrasound-facilitated TDD could be achieved with a drug penetration depth of over 600 p.m, and the penetration concentrations of fluorescent nanoparticles and HA increased up to about 4-5 folds. In order to get better understanding of ultrasound-facilitated TDD, scanning electron microscopy was used to examine the surface morphology of skin samples, which showed that the skin structure changed greatly under the treatment of ultrasound and UCA. The present work suggests that, for TDD applications (e.g., nanoparticle drug carriers, transdermal patches and cosmetics), protocols and methods presented in this paper are potentially useful.
基金Supported by the National Natural Science Foundations of China under Grant Nos 10434070 and 10704037, the Young Scholar Technological Innovation Projects of Jiangsu Province under Grant No BK2007569, and NIH under Grant 8R01 EB00350-2
文摘The dynamic behaviour of SonoVue microbubbles, a new generation ultrasound contrast agent, is investigated in real time with light scattering method. Highly diluted SonoVue microbubbles are injected into a diluted gel made of xanthan gum and water. The responses of individual SonoVue bubbles to driven ultrasound pulses are measured. Both linear and nonlinear bubble oscillations are observed and the results suggest that SonoVue microbubbles can generate strong nonlinear responses. By fitting the experimental data of individual bubble responses with Sarkar's model, the shell coating parameter of the bubbles and dilatational viscosity is estimated to be 7.0 nm-s-Pa.
文摘Mesoporous MCM-41 molecular sieves containing f-block transition elements(gadolinium) with various Si/Gd ratios(50,75 and 100) were synthesised by a hydrothermal method.Their mesoporous structure was confirmed by X-ray diffraction,nitrogen sorption studies,thermogravimetric analysis,scanning and transmission electron microscopy.The local environment of Gd in the material was studied by electron paramagnetic resonance.The compatibility of the catalyst for the synthesis of uniform diameter CNTs by varying the temperature from 400 to 650°C with fixed flow rates of N2 and C2H2(140 ml/min and 40 ml/min,respectively).The product is mostly metal containing thin MWCNTs with diameter of 1020 nm.Characterisation shows that a combination of Gd-MCM-41(100) catalyst gives a high yield of high quality MWCNTs under optimum growth conditions.
基金Projects supported by the National Natural Science Foundation of China(Grant Nos.11474161,11474001,116741731,1774166,11774168,81527803,81627802,and 81420108018)the Fundamental Research Funds for the Central Universities,China(Grant No.020414380109)the Qing Lan Project,China
文摘Theoretical studies on the multi-bubble interaction are crucial for the in-depth understanding of the mechanism behind the applications of ultrasound contrast agents (UCAs) in clinics. A two-dimensional (2D) axisymmetric finite element model (FEM) is developed here to investigate the bubble-bubble interactions for UCAs in a fluidic environment. The effect of the driving frequency and the bubble size on the bubble interaction tendency (viz., bubbles' attraction and repulsion), as well as the influences of bubble shell mechanical parameters (viz., surface tension coefficient and viscosity coefficient) are discussed. Based on FEM simulations, the temporal evolution of the bubbles' radii, the bubble-bubble distance, and the distribution of the velocity field in the surrounding fluid are investigated in detail. The results suggest that for the interacting bubble-bubble couple, the overall translational tendency should be determined by the relationship between the driving frequency and their resonance frequencies. When the driving frequency falls between the resonance frequencies of two bubbles with different sizes, they will repel each other, otherwise they will attract each other. For constant acoustic driving parameters used in this paper, the changing rate of the bubble radius decreases as the viscosity coefficient increases, and increases first then decreases as the bubble shell surface tension coefficient increases, which means that the strength of bubble-bubble interaction could be adjusted by changing the bubble shell visco-elasticity coefficients. The current work should provide a powerful explanation for the accumulation observations in an experiment, and provide a fundamental theoretical support for the applications of UCAs in clinics.
文摘Objective: To investigate the potential of superparamagnetic iron oxide particles (SPIO) in MR imaging for the differentiation between hyperplastic and metastatic lymph node. Methods: Animal models of malignant lymph node metastasis were established in 6 New-Zealand rabbits by a unilateral intra-muscular injection of VX2 carcinoma cells, and models of hyperplastic lymph nodes were induced in another 6 rabbits by a unilateral intra-muscular injection of egg yolk emulsion. MR images of the lymph nodes were obtained before and 12 h after interstitial injection of SPIO. Image results were analyzed and compared with pathological findings. Results: On unenhanced images, the signal intensity of hyperplastic and metastatic lymph nodes did not differ significantly. After administration of SPIO, the signal intensity of both hyperplastic and metastatic lymph nodes remained unchanged on T1-weighted SE images. On T2-weighted SE images, the signal intensity of hyperplastic lymph nodes decreased heterogeneously, while that of all metastatic ones remained unchanged. On T2-weighted GRE images, the signal intensity of hyperplastic lymph nodes decreased significantly and homogeneously, while that of 4 metastatic ones remained unchanged and that of the rest 2 decreased heterogeneously. Conclusion: SPIO-enhanced MR imaging may enable the differentiation between the hyperplastic and metastatic lymph nodes.