A class of hyperbolic equations with continuous distributed deviating arguments is considered and its oscillation theorems are discussed.These theorems are of higher degree of generality and deal with the cases which ...A class of hyperbolic equations with continuous distributed deviating arguments is considered and its oscillation theorems are discussed.These theorems are of higher degree of generality and deal with the cases which are not covered by the known criteria.Particularly,these criteria extend and unify a number of existing results.展开更多
Aim To study a class of boundary value problem of hyperbolic partial functional differential equations with continuous deviating arguments. Methods An averaging technique was used. The multi dimensional problem was...Aim To study a class of boundary value problem of hyperbolic partial functional differential equations with continuous deviating arguments. Methods An averaging technique was used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Results and Conclusion The known results of oscillation of solutions for a class of boundary value problem of hyperbolic partial functional differential equations with discrete deviating arguments are generalized, and the oscillatory criteria of solutions for such equation with two kinds of boundary value conditions are obtained.展开更多
基金Supported by the NNSF of China(A011403)Supported by the Young Teachers Science Foundation of Beijing University of Civil Engineering and Architecture(100804107)
文摘A class of hyperbolic equations with continuous distributed deviating arguments is considered and its oscillation theorems are discussed.These theorems are of higher degree of generality and deal with the cases which are not covered by the known criteria.Particularly,these criteria extend and unify a number of existing results.
文摘Aim To study a class of boundary value problem of hyperbolic partial functional differential equations with continuous deviating arguments. Methods An averaging technique was used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Results and Conclusion The known results of oscillation of solutions for a class of boundary value problem of hyperbolic partial functional differential equations with discrete deviating arguments are generalized, and the oscillatory criteria of solutions for such equation with two kinds of boundary value conditions are obtained.