期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Modeling mechanistic responses in asphalt pavements under three-dimensional tire-pavement contact pressure 被引量:9
1
作者 胡小弟 L.F.WALUBITA 《Journal of Central South University》 SCIE EI CAS 2011年第1期250-258,共9页
A three dimensional finite element program incorporating actually measured vertical tire-pavement contact pressure(TPCP) was utilized for modeling the mechanistic responses in asphalt concrete(AC) layers by simulating... A three dimensional finite element program incorporating actually measured vertical tire-pavement contact pressure(TPCP) was utilized for modeling the mechanistic responses in asphalt concrete(AC) layers by simulating various vehicle motions:stationary and non-stationary(i.e.in acceleration or deceleration mode).Analysis of the results indicated the following items.1) It is critical to use the vertical TPCP as the design control criteria for the tensile strains at the bottom of the AC layer when the base layer modulus is lower in magnitude(e.g.≤400 MPa);however,when the base layer modulus is higher in magnitude(e.g.≥7 000 MPa),the horizontal TPCP and the tensile strains in the X-direction at the surface of the AC layer should also be considered as part of the design response criteria.2) The definition of "overload" needs to be revised to include tire pressure over-inflation,i.e.,a vehicle should be considered to be overloaded if the wheel load exceeds the specification and/or the tire inflation pressure is higher than the specification.3) Light trucks have more structural impact on the strain responses and pavement design when the thickness of the surfacing AC layer is thinner(e.g.≤50 mm).4) The acceleration of a vehicle does not significantly impact the AC surface distresses such as rutting at the top of the upgrade slopes or intersections;however,vehicle deceleration can dramatically induce horizontal shear strains and consequently,aggravate shoving and rutting problems at the highway intersections.Evidently,these factors should be taken into account during mechanistic stress-strain modeling and structural design of asphalt pavements. 展开更多
关键词 asphalt pavement tire-pavement contact pressure vehicle acceleration mechanistic response three-dimensional finiteelement
在线阅读 下载PDF
Contact pressure distribution and support angle optimization of kiln tyre 被引量:2
2
作者 肖友刚 潘迪夫 雷先明 《Journal of Central South University of Technology》 2006年第3期246-250,共5页
According to the shearing force character and the deformation coordination condition of shell at the station of supports, the mathematical models to calculate contact angle and contact pressure distribution between ty... According to the shearing force character and the deformation coordination condition of shell at the station of supports, the mathematical models to calculate contact angle and contact pressure distribution between tyre and shell were set up, the formulae of bending moment and bending stress of tyre were obtained. Taking the maximum of tyre fatigue life as the optimal objective, the optimization model of tyre support angle was built. The computational results show that when tyre support angle is 30°, tyre life is far less than that when tyre support angle is optimal, which is 35.6°, and it is unsuitable to stipulate tyre support angle to be 30° in traditional design. The larger the load, the less the nominal stress amplitude increment of tyre, the more favorable the tyre fatigue life when tyre support angle is optimal. 展开更多
关键词 TYRE contact pressure support angle OPTIMIZATION
在线阅读 下载PDF
Numerical analysis of elastic coated solids in line contact 被引量:2
3
作者 王廷剑 王黎钦 +1 位作者 古乐 赵小力 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2470-2481,共12页
A line contact model of elastic coated solids is presented based on the influence coefficients(ICs) of surface displacement and stresses of coating-substrate system and the traditional contact model. The ICs of displa... A line contact model of elastic coated solids is presented based on the influence coefficients(ICs) of surface displacement and stresses of coating-substrate system and the traditional contact model. The ICs of displacement and stresses are obtained from their corresponding frequency response functions(FRF) by using a conversion method based on fast Fourier transformation(FFT). The contact pressure and the stress field in the subsurface are obtained by employing conjugate gradient method(CGM) and discrete convolution fast Fourier transformation(DC-FFT). Comparison of the contact pressure and subsurface stresses obtained by the numerical method with the exact analytical solutions for Hertz contact is conducted, and the results show that the numerical solution has a very high accuracy and verify the validity of the contact model. The effect of the stiffness and thickness of coatings is further numerically studied. The result shows that the effects on contact pressure and contact width are opposite for hard and soft coatings and are intensified with the increase of coating thickness; the locations of crack initiation and propagation are different for soft and hard coatings; the risk of cracks and delaminations of coatings can be brought down by improving the lubrication condition or optimizing the non-dimensional parameter h/bh. This research offers a tool to numerically analyze the problem of elastic coated solids in line contact and make the blindness and randomness of trial-type coating design less. 展开更多
关键词 coating-substrate system contact pressure stress field frequency response function influence coefficient
在线阅读 下载PDF
Determination of interference fit value on entire roller embedded shapemeter roll 被引量:5
4
作者 吴海淼 刘宏民 +1 位作者 于丙强 杨利坡 《Journal of Central South University》 SCIE EI CAS 2014年第12期4503-4508,共6页
For entire roller embedded shapemeter roll, the relationship between the value of interference fit and the sensor pre-pressure, and the pressure transfer performance of shapemeter roll were analyzed by elasticity theo... For entire roller embedded shapemeter roll, the relationship between the value of interference fit and the sensor pre-pressure, and the pressure transfer performance of shapemeter roll were analyzed by elasticity theory during the cold reversible rolling process. Considering the influence of strip temperature on the interference fit, the distributions of contact pressure of the framework's top surface and the sensor pre-pressure on different values of interference fit were analyzed by the finite element technology. The results show that the contact pressure of the framework's top surface and the sensor pre-pressure increase with the increase of the value of interference fit. When the value of interference fit is between 0.05 mm and 0.09 mm, roll body's inner hole surface, the framework and pressure magnetic sensitive component don't separate from each other, and the sensor works in the linear segment of characteristic curve, so the normal operation of shapemeter roll is guaranteed. 展开更多
关键词 reversible rolling shapemeter roll value of interference fit contact pressure finite element
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部