An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector w...An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms.展开更多
为设计高效稳定的演化算法,将方程求根的不动点迭代思想引入到优化领域,通过将演化算法的寻优过程看作为在迭代框架下方程不动点的逐步显示化过程,设计出一种基于数学模型的演化新算法,即不动点演化算法(fixed point evolution algorith...为设计高效稳定的演化算法,将方程求根的不动点迭代思想引入到优化领域,通过将演化算法的寻优过程看作为在迭代框架下方程不动点的逐步显示化过程,设计出一种基于数学模型的演化新算法,即不动点演化算法(fixed point evolution algorithm,FPEA).该算法的繁殖算子是由Aitken加速的不动点迭代模型导出的二次多项式,其整体框架继承传统演化算法(如差分演化算法)基于种群的迭代模式.试验结果表明:在基准函数集CEC2014、CEC2019上,本文算法的最优值平均排名在所有比较算法中排名第1;在4个工程约束设计问题上,FPEA与CSA、GPE等多个算法相比,能以较少的计算开销获得最高的求解精度.展开更多
针对有服务顺序限制的带时间窗的多需求多目标车辆路径问题(multi-demand and multi-objective vehicle routing problem with time window,MDMOVRPTW),在考虑多种需求由不同车辆按顺序服务等约束条件的同时,构建了最小化配送成本和最...针对有服务顺序限制的带时间窗的多需求多目标车辆路径问题(multi-demand and multi-objective vehicle routing problem with time window,MDMOVRPTW),在考虑多种需求由不同车辆按顺序服务等约束条件的同时,构建了最小化配送成本和最大化客户满意度的多目标模型。根据模型的特点设计了改进的哈里斯鹰优化(improved Harris hawks optimization,IHHO)算法,随机地将种群中部分支配解作为父代解,用临时组合算子和4种交叉算子搜索新解。最后,算例测试结果表明,相较于传统的哈里斯鹰优化算法,IHHO算法的求解性能得到了有效改善,各操作算子中交叉算子2的求解效果最好。将IHHO算法用于实例中,求解结果得到了改善,充分验证了IHHO算法的有效性。展开更多
基金supported by the National Natural Science Foundation of China (60632050)National Basic Research Program of Jiangsu Province University (08KJB520003)
文摘An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms.
文摘为设计高效稳定的演化算法,将方程求根的不动点迭代思想引入到优化领域,通过将演化算法的寻优过程看作为在迭代框架下方程不动点的逐步显示化过程,设计出一种基于数学模型的演化新算法,即不动点演化算法(fixed point evolution algorithm,FPEA).该算法的繁殖算子是由Aitken加速的不动点迭代模型导出的二次多项式,其整体框架继承传统演化算法(如差分演化算法)基于种群的迭代模式.试验结果表明:在基准函数集CEC2014、CEC2019上,本文算法的最优值平均排名在所有比较算法中排名第1;在4个工程约束设计问题上,FPEA与CSA、GPE等多个算法相比,能以较少的计算开销获得最高的求解精度.
文摘针对有服务顺序限制的带时间窗的多需求多目标车辆路径问题(multi-demand and multi-objective vehicle routing problem with time window,MDMOVRPTW),在考虑多种需求由不同车辆按顺序服务等约束条件的同时,构建了最小化配送成本和最大化客户满意度的多目标模型。根据模型的特点设计了改进的哈里斯鹰优化(improved Harris hawks optimization,IHHO)算法,随机地将种群中部分支配解作为父代解,用临时组合算子和4种交叉算子搜索新解。最后,算例测试结果表明,相较于传统的哈里斯鹰优化算法,IHHO算法的求解性能得到了有效改善,各操作算子中交叉算子2的求解效果最好。将IHHO算法用于实例中,求解结果得到了改善,充分验证了IHHO算法的有效性。