An intuitive portrayal of the correlation between the carbon and energy markets is essential for risk control and green financial investment management.In this paper,we investigate the asymmetric spillovers between th...An intuitive portrayal of the correlation between the carbon and energy markets is essential for risk control and green financial investment management.In this paper,we investigate the asymmetric spillovers between the carbon mar-ket and energy market returns.To achieve that,we improve the Diebold-Yilmaz index model by a time-varying vector autoregressive(TVP-VAR)model.In a unified network,our daily dataset includes the closing prices of the Hubei carbon market,Shenzhen carbon market,coal futures,and energy stock index.The findings reveal that both the Hubei and Shen-zhen pilots typically generate net information spillovers on energy futures.In connection with energy stocks,the Hubei carbon market acts as a net receiver,while the Shenzhen carbon market is a net transmitter.Compared with the Hubei pi-lot,the Shenzhen pilot is more tightly connected to the energy markets.Furthermore,the spillovers of the carbon markets exhibit significant asymmetry.In most cases,they have more substantial impacts on the energy markets when the prices of emission allowances rise.The direction and magnitude of asymmetric spillovers across markets vary over time and can be influenced by certain economic or political events.展开更多
A fast interactive segmentation algorithm of image-sequences based on relative fuzzy connectedness is presented. In comparison with the original algorithm, the proposed one, with the same accuracy, accelerates the seg...A fast interactive segmentation algorithm of image-sequences based on relative fuzzy connectedness is presented. In comparison with the original algorithm, the proposed one, with the same accuracy, accelerates the segmentation speed by three times for single image. Meanwhile, this fast segmentation algorithm is extended from single object to multiple objects and from single-image to image-sequences. Thus the segmentation of multiple objects from complex hackground and batch segmentation of image-sequences can be achieved. In addition, a post-processing scheme is incorporated in this algorithm, which extracts smooth edge with one-pixel-width for each segmented object. The experimental results illustrate that the proposed algorithm can obtain the object regions of interest from medical image or image-sequences as well as man-made images quickly and reliably with only a little interaction.展开更多
“Connectedness” is an essential component of genetic evaluations. The degree of connectedness affects the accuracy of comparing estimated breeding values (EBVs) from one herd or contemporary group to the other. It c...“Connectedness” is an essential component of genetic evaluations. The degree of connectedness affects the accuracy of comparing estimated breeding values (EBVs) from one herd or contemporary group to the other. It can be measured through Connectedness Rating (CR) which is based on variances and covariance among the estimates of contemporary group effects. A computing algorithm and a computer program for estimating CR is available. The minimum required level of connectedness depends upon the size of the contemporary groups, the level of accuracy and the residual variance. About 48% CR is required to detect differences between EBVs that are greater than 20% of the standard deviation in the trait, for group sizes of about 100 animals. Higher levels are necessary for smaller group sizes and for more accurate comparisons. Breeders participating in a common genetic evaluation program should therefore exchange their superior genetics and possibly use some common testing facilities for meaningful estimates of breeding values. Maintaining a good connectedness level will make the genetic evaluation program more useful for selection of superior breeding animals and achieving faster rate of genetic progress.展开更多
With the development of fast communication technology between ego vehicle and other traffic participants,and automated driving technology,there is a big potential in the improvement of energy efficiency of hybrid elec...With the development of fast communication technology between ego vehicle and other traffic participants,and automated driving technology,there is a big potential in the improvement of energy efficiency of hybrid electric vehicles(HEVs).Moreover,the terrain along the driving route is a non-ignorable factor for energy efficiency of HEV running on the hilly streets.This paper proposes a look-ahead horizon-based optimal energy management strategy to jointly improve the efficiencies of powertrain and vehicle for connected and automated HEVs on the road with slope.Firstly,a rule-based framework is developed to guarantee the success of automated driving in the traffic scenario.Then a constrained optimal control problem is formulated to minimize the fuel consumption and the electricity consumption under the satisfaction of inter-vehicular distance constraint between ego vehicle and preceding vehicle.Both speed planning and torque split of hybrid powertrain are provided by the proposed approach.Moreover,the preceding vehicle speed in the look-ahead horizon is predicted by extreme learning machine with real-time data obtained from communication of vehicle-to-everything.The optimal solution is derived through the Pontryagin’s maximum principle.Finally,to verify the effectiveness of the proposed algorithm,a traffic-in-the-loop powertrain platform with data from real world traffic environment is built.It is found that the fuel economy for the proposed energy management strategy improves in average 17.0%in scenarios of different traffic densities,compared to the energy management strategy without prediction of preceding vehicle speed.展开更多
In order to accommodate higher speeds,heavier axle weights,and vibration damping criteria,a new floating slab structure was proposed.The new type of floating slab track structure was composed of three prefabricated fl...In order to accommodate higher speeds,heavier axle weights,and vibration damping criteria,a new floating slab structure was proposed.The new type of floating slab track structure was composed of three prefabricated floating slabs longitudinally interconnected with magnesium ammonium phosphate concrete(MPC).This study investigated the dynamic performance of the structure.We constructd a full-scale indoor experimental model to scrutinize the disparities in the impact performance between a longitudinally connected floating slab track and its longitudinally disconnected counterpart.Additionally,a long-term fatigue experiment was conducted to assess the impact performance of longitudinally connected floating slab tracks under fatigue loading.The findings are described in the following.1)The new structure effectively suppresses ground vibrations,exhibiting a well-balanced energy distribution profile.However,the imposition of fatigue loading leads to a reduction in the damping performance of the steel spring damping system,thereby reducing its capacity to attenuate structural vibrations and leading to an increase in ground vibration energy;2)After 107 loading cycles,the attenuation rate of the vibration acceleration for the MPC increases by 171.9%.Conversely,at the corresponding disconnected location,the attenuation rate of ground vibration acceleration decreases by 65.6%.In conclusion,longitudinally connected floating slab tracks exhibit superior vibration reduction performance.While the vibration reduction performance of longitudinally connected floating slab tracks may diminish to some extent during long-term service,these tracks continue to meet specific vibration reduction requirements.展开更多
In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperatur...In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction.展开更多
The connected and automated vehicles(CAVs)technologies provide more information to drivers in the car-following(CF)process.Unlike the human-driven vehicles(HVs),which only considers information in front,the CAVs circu...The connected and automated vehicles(CAVs)technologies provide more information to drivers in the car-following(CF)process.Unlike the human-driven vehicles(HVs),which only considers information in front,the CAVs circumstance allows them to obtain information in front and behind,enhancing vehicles perception ability.This paper proposes an intelligent back-looking distance driver model(IBDM)considering the desired distance of the following vehicle in homogeneous CAVs environment.Based on intelligent driver model(IDM),the IBDM integrates behind information of vehicles as a control term.The stability condition against a small perturbation is analyzed using linear stability theory in the homogeneous traffic flow.To validate the theoretical analysis,simulations are carried out on a single lane under the open boundary condition,and compared with the IDM not considering the following vehicle and the extended IDM considering the information of vehicle preceding and next preceding.Six scenarios are designed to evaluate the results under different disturbance strength,disturbance location,and initial platoon space distance.The results reveal that the IBDM has an advantage over IDM and the extended IDM in control of CAVs car-following process in maintaining string stability,and the stability improves by increasing the proportion of the new item.展开更多
Driving safety field(DSF) model has been proposed to represent comprehensive driving risk formed by interactions of driver-vehicle-road in mixed traffic environment. In this work, we establish an optimization model ba...Driving safety field(DSF) model has been proposed to represent comprehensive driving risk formed by interactions of driver-vehicle-road in mixed traffic environment. In this work, we establish an optimization model based on grey relation degree analysis to calibrate risk coefficients of DSF model. To solve the optimum solution, a genetic algorithm is employed. Finally, the DSF model is verified through a real-world driving experiment. Results show that the DSF model is consistent with driver's hazard perception and more sensitive than TTC. Moreover, the proposed DSF model offers a novel way for criticality assessment and decision-making of advanced driver assistance systems and intelligent connected vehicles.展开更多
Many vehicle platoons are interrupted while traveling on roads,especially at urban signalized intersections.One reason for such interruptions is the inability to exchange real-time information between traditional huma...Many vehicle platoons are interrupted while traveling on roads,especially at urban signalized intersections.One reason for such interruptions is the inability to exchange real-time information between traditional human-driven vehicles and intersection infrastructure.Thus,this paper develops a Markov chain-based model to recognize platoons.A simulation experiment is performed in Vissim based on field data extracted from video recordings to prove the model’s applicability.The videos,recorded with a high-definition camera,contain field driving data from three Tesla vehicles,which can achieve Level 2 autonomous driving.The simulation results show that the recognition rate exceeds 80%when the connected and autonomous vehicle penetration rate is higher than 0.7.Whether a vehicle is upstream or downstream of an intersection also affects the performance of platoon recognition.The platoon recognition model developed in this paper can be used as a signal control input at intersections to reduce the unnecessary interruption of vehicle platoons and improve traffic efficiency.展开更多
High resolution cameras and multi camera systems are being used in areas of video surveillance like security of public places, traffic monitoring, and military and satellite imaging. This leads to a demand for computa...High resolution cameras and multi camera systems are being used in areas of video surveillance like security of public places, traffic monitoring, and military and satellite imaging. This leads to a demand for computational algorithms for real time processing of high resolution videos. Motion detection and background separation play a vital role in capturing the object of interest in surveillance videos, but as we move towards high resolution cameras, the time-complexity of the algorithm increases and thus fails to be a part of real time systems. Parallel architecture provides a surpass platform to work efficiently with complex algorithmic solutions. In this work, a method was proposed for identifying the moving objects perfectly in the videos using adaptive background making, motion detection and object estimation. The pre-processing part includes an adaptive block background making model and a dynamically adaptive thresholding technique to estimate the moving objects. The post processing includes a competent parallel connected component labelling algorithm to estimate perfectly the objects of interest. New parallel processing strategies are developed on each stage of the algorithm to reduce the time-complexity of the system. This algorithm has achieved a average speedup of 12.26 times for lower resolution video frames(320×240, 720×480, 1024×768) and 7.30 times for higher resolution video frames(1360×768, 1920×1080, 2560×1440) on GPU, which is superior to CPU processing. Also, this algorithm was tested by changing the number of threads in a thread block and the minimum execution time has been achieved for 16×16 thread block. And this algorithm was tested on a night sequence where the amount of light in the scene is very less and still the algorithm has given a significant speedup and accuracy in determining the object.展开更多
Heterogeneous wireless access technologies will coexist in next generation wireless networks.These technologies form integrated networks,and these networks support multiple services with high quality level.Various acc...Heterogeneous wireless access technologies will coexist in next generation wireless networks.These technologies form integrated networks,and these networks support multiple services with high quality level.Various access technologies allow users to select the best available access network to meet the requirements of each type of communication service.Being always best connected anytime and anywhere is a major concern in a heterogeneous wireless networks environment.Always best connected enables network selection mechanisms to keep mobile users always connected to the best network.We present an overview of the network selection and prediction problems and challenges.In addition,we discuss a comprehensive classification of related theoretic approaches,and also study the integration between these methods,finding the best solution of network selection and prediction problems.The optimal solution can fulfill the requirements of the next generation wireless networks.展开更多
Based on a simplified 3-DOF model of twin-tower structure linked by a sky-bridge,the frequency response functions,the displacement power spectral density(PSD)functions,and the time-averaged total vibration energy were...Based on a simplified 3-DOF model of twin-tower structure linked by a sky-bridge,the frequency response functions,the displacement power spectral density(PSD)functions,and the time-averaged total vibration energy were derived,by assuming the white noise as the earthquake excitation.The effects of connecting parameters,such as linking stiffness ratio and linking damping ratio,on the structural vibration responses were then studied,and the optimal connecting parameters were obtained to minimize the vibration energy of either the independent monomer tower or the integral structure.The influences of sky-bridge elevation position on the optimal connecting parameters were also discussed.Finally,the distribution characteristics of the top displacement PSD and the structural responses,excited by El Centro,Taft and artificial waves,were compared in both frequency and time domain.It is found that the connecting parameters at either end of connection interactively affect the responses of the towers.The optimal connecting parameters can greatly improve the damping connections on their seismic reduction effectiveness,but are unable to reduce the seismic responses of the towers to the best extent simultaneously.It is also indicated that the optimal connecting parameters derived from the simplified 3-DOF model are applicable for two multi-story structures linked by a sky-bridge with dampers.The seismic reduction effectiveness obtained varies from 0.3 to 1.0 with different sky-bridge mass ratio.The displacement responses of the example structures are reduced by approximately 22% with sky-bridge connections.展开更多
A new method is presented for the segmentation of pulmonary parenchyma. The proposed method is based on the area calculation of different objects in the image. The main purpose of the proposed algorithm is the segment...A new method is presented for the segmentation of pulmonary parenchyma. The proposed method is based on the area calculation of different objects in the image. The main purpose of the proposed algorithm is the segment of the lungs images from the computer tomography(CT) images. The original image is binarized using the bit-plane slicing technique and among the different images the best binarized image is chosen. After binarization, the labeling is done and the area of each label is calculated from which the next level of binarized image is obtained. Then, the boundary tracing algorithm is applied to get another level of binarized image. The proposed method is able to extract lung region from the original images. The experimental results show the significance of the proposed method.展开更多
The concept of connected vehicles is with great potentials for enhancing the road transportation systems in the future. To support the functions and applications under the connected vehicles frame, the estimation of d...The concept of connected vehicles is with great potentials for enhancing the road transportation systems in the future. To support the functions and applications under the connected vehicles frame, the estimation of dynamic states of the vehicles under the cooperative environments is a fundamental issue. By integrating multiple sensors, localization modules in OBUs(on-board units) require effective estimation solutions to cope with various operation conditions. Based on the filtering estimation framework for sensor fusion, an ensemble Kalman filter(En KF) is introduced to estimate the vehicle's state with observations from navigation satellites and neighborhood vehicles, and the original En KF solution is improved by using the cubature transformation to fulfill the requirements of the nonlinearity approximation capability, where the conventional ensemble analysis operation in En KF is modified to enhance the estimation performance without increasing the computational burden significantly. Simulation results from a nonlinear case and the cooperative vehicle localization scenario illustrate the capability of the proposed filter, which is crucial to realize the active safety of connected vehicles in future intelligent transportation.展开更多
Although the agriculture in Heilongjiang Province has develope poor historical basis and differences between rural and urban institutional fa d ct effectively in recent years, due to issues such as ors, the backward o...Although the agriculture in Heilongjiang Province has develope poor historical basis and differences between rural and urban institutional fa d ct effectively in recent years, due to issues such as ors, the backward of the agricultural fundamental infrastructure is always the major obstacle in rural economic development of Heilongjiang Province, which prevents the advantage of agricultural production from being fully developed, leading to the increase rate of the grain yield to grow slowly. The backward reflects in the following aspects, the serious aging of water facilities, insufficient agricultural machinery and equipment, low leve of rural roads, lacking of research equipment, shortage of ecological protection facilities, and so on. Based on the latcr data of Heilongjiang Province, this paper analyzed the connection between agricultural fundamental infrastructure and grain yield by using the gray connected model, differentiated primary rural fundamental infrastructure from the secondary one, and provided some suggestions to develop rural areas展开更多
The phrase Dutch treat is sometimes connected with an unpleasant andembarrassing situation.At an hotel you and your friend have had anexpensive dinner.Well,the waiter brings the check shortly after you haveoffered to ...The phrase Dutch treat is sometimes connected with an unpleasant andembarrassing situation.At an hotel you and your friend have had anexpensive dinner.Well,the waiter brings the check shortly after you haveoffered to pay for the dinner.It’s a great check and you are shocked展开更多
基金supported by the National Natural Science Foundation of China(71973001).
文摘An intuitive portrayal of the correlation between the carbon and energy markets is essential for risk control and green financial investment management.In this paper,we investigate the asymmetric spillovers between the carbon mar-ket and energy market returns.To achieve that,we improve the Diebold-Yilmaz index model by a time-varying vector autoregressive(TVP-VAR)model.In a unified network,our daily dataset includes the closing prices of the Hubei carbon market,Shenzhen carbon market,coal futures,and energy stock index.The findings reveal that both the Hubei and Shen-zhen pilots typically generate net information spillovers on energy futures.In connection with energy stocks,the Hubei carbon market acts as a net receiver,while the Shenzhen carbon market is a net transmitter.Compared with the Hubei pi-lot,the Shenzhen pilot is more tightly connected to the energy markets.Furthermore,the spillovers of the carbon markets exhibit significant asymmetry.In most cases,they have more substantial impacts on the energy markets when the prices of emission allowances rise.The direction and magnitude of asymmetric spillovers across markets vary over time and can be influenced by certain economic or political events.
文摘A fast interactive segmentation algorithm of image-sequences based on relative fuzzy connectedness is presented. In comparison with the original algorithm, the proposed one, with the same accuracy, accelerates the segmentation speed by three times for single image. Meanwhile, this fast segmentation algorithm is extended from single object to multiple objects and from single-image to image-sequences. Thus the segmentation of multiple objects from complex hackground and batch segmentation of image-sequences can be achieved. In addition, a post-processing scheme is incorporated in this algorithm, which extracts smooth edge with one-pixel-width for each segmented object. The experimental results illustrate that the proposed algorithm can obtain the object regions of interest from medical image or image-sequences as well as man-made images quickly and reliably with only a little interaction.
文摘“Connectedness” is an essential component of genetic evaluations. The degree of connectedness affects the accuracy of comparing estimated breeding values (EBVs) from one herd or contemporary group to the other. It can be measured through Connectedness Rating (CR) which is based on variances and covariance among the estimates of contemporary group effects. A computing algorithm and a computer program for estimating CR is available. The minimum required level of connectedness depends upon the size of the contemporary groups, the level of accuracy and the residual variance. About 48% CR is required to detect differences between EBVs that are greater than 20% of the standard deviation in the trait, for group sizes of about 100 animals. Higher levels are necessary for smaller group sizes and for more accurate comparisons. Breeders participating in a common genetic evaluation program should therefore exchange their superior genetics and possibly use some common testing facilities for meaningful estimates of breeding values. Maintaining a good connectedness level will make the genetic evaluation program more useful for selection of superior breeding animals and achieving faster rate of genetic progress.
文摘With the development of fast communication technology between ego vehicle and other traffic participants,and automated driving technology,there is a big potential in the improvement of energy efficiency of hybrid electric vehicles(HEVs).Moreover,the terrain along the driving route is a non-ignorable factor for energy efficiency of HEV running on the hilly streets.This paper proposes a look-ahead horizon-based optimal energy management strategy to jointly improve the efficiencies of powertrain and vehicle for connected and automated HEVs on the road with slope.Firstly,a rule-based framework is developed to guarantee the success of automated driving in the traffic scenario.Then a constrained optimal control problem is formulated to minimize the fuel consumption and the electricity consumption under the satisfaction of inter-vehicular distance constraint between ego vehicle and preceding vehicle.Both speed planning and torque split of hybrid powertrain are provided by the proposed approach.Moreover,the preceding vehicle speed in the look-ahead horizon is predicted by extreme learning machine with real-time data obtained from communication of vehicle-to-everything.The optimal solution is derived through the Pontryagin’s maximum principle.Finally,to verify the effectiveness of the proposed algorithm,a traffic-in-the-loop powertrain platform with data from real world traffic environment is built.It is found that the fuel economy for the proposed energy management strategy improves in average 17.0%in scenarios of different traffic densities,compared to the energy management strategy without prediction of preceding vehicle speed.
基金Project(2022-Major-14)supported by the Science and Technology Research and Development Program Project of China Railway Group Limited。
文摘In order to accommodate higher speeds,heavier axle weights,and vibration damping criteria,a new floating slab structure was proposed.The new type of floating slab track structure was composed of three prefabricated floating slabs longitudinally interconnected with magnesium ammonium phosphate concrete(MPC).This study investigated the dynamic performance of the structure.We constructd a full-scale indoor experimental model to scrutinize the disparities in the impact performance between a longitudinally connected floating slab track and its longitudinally disconnected counterpart.Additionally,a long-term fatigue experiment was conducted to assess the impact performance of longitudinally connected floating slab tracks under fatigue loading.The findings are described in the following.1)The new structure effectively suppresses ground vibrations,exhibiting a well-balanced energy distribution profile.However,the imposition of fatigue loading leads to a reduction in the damping performance of the steel spring damping system,thereby reducing its capacity to attenuate structural vibrations and leading to an increase in ground vibration energy;2)After 107 loading cycles,the attenuation rate of the vibration acceleration for the MPC increases by 171.9%.Conversely,at the corresponding disconnected location,the attenuation rate of ground vibration acceleration decreases by 65.6%.In conclusion,longitudinally connected floating slab tracks exhibit superior vibration reduction performance.While the vibration reduction performance of longitudinally connected floating slab tracks may diminish to some extent during long-term service,these tracks continue to meet specific vibration reduction requirements.
基金supported by the National Natural Science Foundation of China(No.62271109)。
文摘In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction.
基金Project(2018YFB1600600)supported by the National Key Research and Development Program,ChinaProject(20YJAZH083)supported by the Ministry of Education,China+1 种基金Project(20YJAZH083)supported by the Humanities and Social Sciences,ChinaProject(51878161)supported by the National Natural Science Foundation of China。
文摘The connected and automated vehicles(CAVs)technologies provide more information to drivers in the car-following(CF)process.Unlike the human-driven vehicles(HVs),which only considers information in front,the CAVs circumstance allows them to obtain information in front and behind,enhancing vehicles perception ability.This paper proposes an intelligent back-looking distance driver model(IBDM)considering the desired distance of the following vehicle in homogeneous CAVs environment.Based on intelligent driver model(IDM),the IBDM integrates behind information of vehicles as a control term.The stability condition against a small perturbation is analyzed using linear stability theory in the homogeneous traffic flow.To validate the theoretical analysis,simulations are carried out on a single lane under the open boundary condition,and compared with the IDM not considering the following vehicle and the extended IDM considering the information of vehicle preceding and next preceding.Six scenarios are designed to evaluate the results under different disturbance strength,disturbance location,and initial platoon space distance.The results reveal that the IBDM has an advantage over IDM and the extended IDM in control of CAVs car-following process in maintaining string stability,and the stability improves by increasing the proportion of the new item.
基金Projects(51475254,51625503)supported by the National Natural Science Foundation of ChinaProject(MCM20150302)supported by the Joint Project of Tsinghua and China Mobile,ChinaProject supported by the joint Project of Tsinghua and Daimler Greater China Ltd.,Beijing,China
文摘Driving safety field(DSF) model has been proposed to represent comprehensive driving risk formed by interactions of driver-vehicle-road in mixed traffic environment. In this work, we establish an optimization model based on grey relation degree analysis to calibrate risk coefficients of DSF model. To solve the optimum solution, a genetic algorithm is employed. Finally, the DSF model is verified through a real-world driving experiment. Results show that the DSF model is consistent with driver's hazard perception and more sensitive than TTC. Moreover, the proposed DSF model offers a novel way for criticality assessment and decision-making of advanced driver assistance systems and intelligent connected vehicles.
基金Project(71871013)supported by the National Natural Science Foundation of China。
文摘Many vehicle platoons are interrupted while traveling on roads,especially at urban signalized intersections.One reason for such interruptions is the inability to exchange real-time information between traditional human-driven vehicles and intersection infrastructure.Thus,this paper develops a Markov chain-based model to recognize platoons.A simulation experiment is performed in Vissim based on field data extracted from video recordings to prove the model’s applicability.The videos,recorded with a high-definition camera,contain field driving data from three Tesla vehicles,which can achieve Level 2 autonomous driving.The simulation results show that the recognition rate exceeds 80%when the connected and autonomous vehicle penetration rate is higher than 0.7.Whether a vehicle is upstream or downstream of an intersection also affects the performance of platoon recognition.The platoon recognition model developed in this paper can be used as a signal control input at intersections to reduce the unnecessary interruption of vehicle platoons and improve traffic efficiency.
文摘High resolution cameras and multi camera systems are being used in areas of video surveillance like security of public places, traffic monitoring, and military and satellite imaging. This leads to a demand for computational algorithms for real time processing of high resolution videos. Motion detection and background separation play a vital role in capturing the object of interest in surveillance videos, but as we move towards high resolution cameras, the time-complexity of the algorithm increases and thus fails to be a part of real time systems. Parallel architecture provides a surpass platform to work efficiently with complex algorithmic solutions. In this work, a method was proposed for identifying the moving objects perfectly in the videos using adaptive background making, motion detection and object estimation. The pre-processing part includes an adaptive block background making model and a dynamically adaptive thresholding technique to estimate the moving objects. The post processing includes a competent parallel connected component labelling algorithm to estimate perfectly the objects of interest. New parallel processing strategies are developed on each stage of the algorithm to reduce the time-complexity of the system. This algorithm has achieved a average speedup of 12.26 times for lower resolution video frames(320×240, 720×480, 1024×768) and 7.30 times for higher resolution video frames(1360×768, 1920×1080, 2560×1440) on GPU, which is superior to CPU processing. Also, this algorithm was tested by changing the number of threads in a thread block and the minimum execution time has been achieved for 16×16 thread block. And this algorithm was tested on a night sequence where the amount of light in the scene is very less and still the algorithm has given a significant speedup and accuracy in determining the object.
基金funded by the University of Malaya, under Grant No.RG208-11AFR
文摘Heterogeneous wireless access technologies will coexist in next generation wireless networks.These technologies form integrated networks,and these networks support multiple services with high quality level.Various access technologies allow users to select the best available access network to meet the requirements of each type of communication service.Being always best connected anytime and anywhere is a major concern in a heterogeneous wireless networks environment.Always best connected enables network selection mechanisms to keep mobile users always connected to the best network.We present an overview of the network selection and prediction problems and challenges.In addition,we discuss a comprehensive classification of related theoretic approaches,and also study the integration between these methods,finding the best solution of network selection and prediction problems.The optimal solution can fulfill the requirements of the next generation wireless networks.
基金Project(51178203)supported by the National Natural Science Foundation of China
文摘Based on a simplified 3-DOF model of twin-tower structure linked by a sky-bridge,the frequency response functions,the displacement power spectral density(PSD)functions,and the time-averaged total vibration energy were derived,by assuming the white noise as the earthquake excitation.The effects of connecting parameters,such as linking stiffness ratio and linking damping ratio,on the structural vibration responses were then studied,and the optimal connecting parameters were obtained to minimize the vibration energy of either the independent monomer tower or the integral structure.The influences of sky-bridge elevation position on the optimal connecting parameters were also discussed.Finally,the distribution characteristics of the top displacement PSD and the structural responses,excited by El Centro,Taft and artificial waves,were compared in both frequency and time domain.It is found that the connecting parameters at either end of connection interactively affect the responses of the towers.The optimal connecting parameters can greatly improve the damping connections on their seismic reduction effectiveness,but are unable to reduce the seismic responses of the towers to the best extent simultaneously.It is also indicated that the optimal connecting parameters derived from the simplified 3-DOF model are applicable for two multi-story structures linked by a sky-bridge with dampers.The seismic reduction effectiveness obtained varies from 0.3 to 1.0 with different sky-bridge mass ratio.The displacement responses of the example structures are reduced by approximately 22% with sky-bridge connections.
基金supported (in part) by research funding from Chosun University, Korea, 2013
文摘A new method is presented for the segmentation of pulmonary parenchyma. The proposed method is based on the area calculation of different objects in the image. The main purpose of the proposed algorithm is the segment of the lungs images from the computer tomography(CT) images. The original image is binarized using the bit-plane slicing technique and among the different images the best binarized image is chosen. After binarization, the labeling is done and the area of each label is calculated from which the next level of binarized image is obtained. Then, the boundary tracing algorithm is applied to get another level of binarized image. The proposed method is able to extract lung region from the original images. The experimental results show the significance of the proposed method.
基金Project(4144081)supported by Beijing Natural Science Foundation,ChinaProjects(61403021,U1334211,61490705)supported by the National Natural Science Foundation of China+1 种基金Project(2015RC015)supported by the Fundamental Research Funds for Central Universities,ChinaProject supported by the Foundation of Beijing Key Laboratory for Cooperative Vehicle Infrastructure Systems and Safety Control,China
文摘The concept of connected vehicles is with great potentials for enhancing the road transportation systems in the future. To support the functions and applications under the connected vehicles frame, the estimation of dynamic states of the vehicles under the cooperative environments is a fundamental issue. By integrating multiple sensors, localization modules in OBUs(on-board units) require effective estimation solutions to cope with various operation conditions. Based on the filtering estimation framework for sensor fusion, an ensemble Kalman filter(En KF) is introduced to estimate the vehicle's state with observations from navigation satellites and neighborhood vehicles, and the original En KF solution is improved by using the cubature transformation to fulfill the requirements of the nonlinearity approximation capability, where the conventional ensemble analysis operation in En KF is modified to enhance the estimation performance without increasing the computational burden significantly. Simulation results from a nonlinear case and the cooperative vehicle localization scenario illustrate the capability of the proposed filter, which is crucial to realize the active safety of connected vehicles in future intelligent transportation.
文摘Although the agriculture in Heilongjiang Province has develope poor historical basis and differences between rural and urban institutional fa d ct effectively in recent years, due to issues such as ors, the backward of the agricultural fundamental infrastructure is always the major obstacle in rural economic development of Heilongjiang Province, which prevents the advantage of agricultural production from being fully developed, leading to the increase rate of the grain yield to grow slowly. The backward reflects in the following aspects, the serious aging of water facilities, insufficient agricultural machinery and equipment, low leve of rural roads, lacking of research equipment, shortage of ecological protection facilities, and so on. Based on the latcr data of Heilongjiang Province, this paper analyzed the connection between agricultural fundamental infrastructure and grain yield by using the gray connected model, differentiated primary rural fundamental infrastructure from the secondary one, and provided some suggestions to develop rural areas
文摘The phrase Dutch treat is sometimes connected with an unpleasant andembarrassing situation.At an hotel you and your friend have had anexpensive dinner.Well,the waiter brings the check shortly after you haveoffered to pay for the dinner.It’s a great check and you are shocked