In this paper,we introduce and prove three analytic results related to uniform convergence,properties of Newtonian potential,and convergence of sequences in Sobolev space constrained by their Laplacian.Then,utilizing ...In this paper,we introduce and prove three analytic results related to uniform convergence,properties of Newtonian potential,and convergence of sequences in Sobolev space constrained by their Laplacian.Then,utilizing our analytic results,we develop a complete proof of a crucial estimate appearing in the results of Guofang Wang and Xiaohua Zhu,which states the classification of extremal Hermitian metrics with finite energy and area on compact Riemann surfaces and finite singularities satisfying small singular angles.展开更多
This study aims to develop a framework based on the Nadal formula to assess train derailment risk. Monte Carlo simulation was adopted to develop 10000 sets of random parameters to assess train derailment risk subject ...This study aims to develop a framework based on the Nadal formula to assess train derailment risk. Monte Carlo simulation was adopted to develop 10000 sets of random parameters to assess train derailment risk subject to the curvature radius of the track, the difference between the flange angle and the equivalent conicity, and accelerations from 250 to 989.22 gal during horizontal earthquake. The results indicated that railway in Taiwan, China has no derailment risk under normal conditions. However, when earthquakes occur, the derailment risk increases with the unloading factor which is caused by seismic force. The results also show that equivalent conicity increases derailment risk;as a result, equivalent conicity should be listed as one of maintenance priorities. In addition, among all train derailment factors, flange angle, equivalent conicity and unload factors are the most significant ones.展开更多
The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle ho...The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle hole were analyzed.Results show that the inner conicity of nozzle hole inhibits the development of cavitation phenomena,and increases the injection rate.While the outer conicity of nozzle hole promotes the diffusion of cavita-tion,leading to reductions of the liquid volume fraction of the nozzle outlet and the local flow resistance of the nozzle hole.The sensitivity of cycle fuel mass to inner-cone nozzle hole is stronger than that of the outer-cone noz-zle,especially at the smaller hole conicity.The increase of injection pressure enhances the sensitivity of the injection characteristics to the nozzle hole structure,in which inner-cone nozzle has higher sensitivity coefficient than the outer-cone nozzle hole.However,the increase of injection pressure aggravates the offset of liquid jet to the nozzle axis of the outer-cone nozzle hole.With the increase of the inner conicity of nozzle,the sensitivity of the injection characteristics to the entrance radius of the hole decreases.With the increase of the outer conicity of nozzle hole,the sensitivity of the injection characteristics to the entrance radius of the hole increases.展开更多
In order to obtain the determining method of the installing angle and decrease the performance indices (cutting force and wearing rate) of the pick, the relationships among the installing angles (impact angle, inclina...In order to obtain the determining method of the installing angle and decrease the performance indices (cutting force and wearing rate) of the pick, the relationships among the installing angles (impact angle, inclination angle and the skew angle) were studied, and the static model of installing angles of the pick was built. The relationships among the impact angle, the tip angle of pick and the kinematics parameters of the pick were built, too. Moreover, the mechanic models of the maximum clearance angle and the wearing angle of the pick were set up. To research the relationships of the installing angles and the change law of the wearing angle along with the kinematics parameters, the simulation was done. In order to verify the correctness of the models, the cutting experiments were done by employing two picks with different pick tip angles. The results indicate that, the cutting force is the smallest when the direction of the resultant force of pick follows its axis, and the relationship derived among the installing angles should be satisfied. In addition, to decrease the cutting force and the wearing of the pick, the tip angle of pick should not be larger than the half of the difference between the minimum wearing angle and the impact angle of the pick, and the clearance angle must not be less than zero.展开更多
The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic found...The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic foundation(T-P-EF).It is one of the first attempts to derive the governing equations of the CCSs reinforced with CNTs,based on a generalized first-order shear deformation shell theory(FSDST)which includes shell-foundation interaction.By adopting the extended mixing rule,the effective material properties of CCSs reinforced by CNTs with linear distributions are approximated by introducing some efficiency parameters.Three carbon nanotube distribution in the matrix,i.e.uniform distribution(U)and V and X-types linear distribution are taken into account.The stability equations are solved by using the Galerkin procedure to determine the combined buckling loads(CBLs)of the structure selected here.The numerical illustrations cover CBLs characteristics of CCSs reinforced by CNTs in the presence of the T-P-EF.Finally,a parametric study is carried out to study the influences of the foundation parameters,the volume fraction of carbon nanotubes and the types of reinforcement on the CBLs.展开更多
The internal turbulent flow in conical diffuser is a very complicated adverse pressure gradient flow.DLR k-ε turbulence model was adopted to study it.The every terms of the Laplace operator in DLR k-ε turbulence mod...The internal turbulent flow in conical diffuser is a very complicated adverse pressure gradient flow.DLR k-ε turbulence model was adopted to study it.The every terms of the Laplace operator in DLR k-ε turbulence model and pressure Poisson equation were discretized by upwind difference scheme.A new full implicit difference scheme of 5-point was constructed by using finite volume method and finite difference method.A large sparse matrix with five diagonals was formed and was stored by three arrays of one dimension in a compressed mode.General iterative methods do not work wel1 with large sparse matrix.With algebraic multigrid method(AMG),linear algebraic system of equations was solved and the precision was set at 10-6.The computation results were compared with the experimental results.The results show that the computation results have a good agreement with the experiment data.The precision of computational results and numerical simulation efficiency are greatly improved.展开更多
A two-pass annealing/quenching internal spinning process with small-end rotations is proposed to form a curved generatrix conical thin-walled shell.That is,annealing at 360°C for 2 h followed by the 1st pass spin...A two-pass annealing/quenching internal spinning process with small-end rotations is proposed to form a curved generatrix conical thin-walled shell.That is,annealing at 360°C for 2 h followed by the 1st pass spinning,and finally quenching in ice water after holding for 1 h at 498°C followed by the 2nd pass spinning.ABAQUS finite element software is used to simulate the internal spinning process of the products formed under different forming parameters.The distribution laws of spinning force,the stress and strain under different forming processes were compared and analyzed.The mechanical properties and microstructure of the products are subsequently analyzed.The results show that the strain and the residual stress in the skin area of the formed products under two-pass spinning process more uniform,and the hardness and the mechanical performance are improved.The microstructure of the products formed with the 0.15 mm thickness reduction at the 2nd pass is excellent.And the second phase grain size distributed uniformly in the range of 36μm.Whereas,the second phase particles are broken seriously and the size distribution inhomogeneity is increased when the thickness reduction in the skin area is greater than 0.20 mm at the 2nd pass spinning process.展开更多
In this paper,crashworthiness performance of multi-cell conical tubes with new sectional configuration design(i.e.square,hexagonal,octagonal,decagon and circular)has been evaluated under axial and three different obli...In this paper,crashworthiness performance of multi-cell conical tubes with new sectional configuration design(i.e.square,hexagonal,octagonal,decagon and circular)has been evaluated under axial and three different oblique loads.The same weight conical tubes were comparatively studied using an experimentally validated finite element model generated in LS-DYNA.Complex proportional assessment(COPRAS)method was then employed to select the most efficient tube using two conflicting criteria,namely peak collapse force(PCF)and energy absorption(EA).From the COPRAS calculations,the multi-cell conical tube with decagonal cross-section(MCDT)showed the best crashworthiness performance.Furthermore,the effects of possible number of inside ribs on the crashworthiness of the decagonal conical tubes were also evaluated,and the results displayed that the tubes performed better as the number of ribs increased.Finally,parameters(the cone angle,θ,and ratio of the internal tube size to the external one,S)of MCDT were optimized by adopting artificial neural networks(ANN)and genetic algorithm(GA)techniques.Based on the multi-objective optimization results,the optimum dimension parameters were found to beθ=7.9o,S=0.46 andθ=8o,S=0.74 from the minimum distance selection(MDS)and COPRAS methods,respectively.展开更多
Thin-walled tubes are increasingly used in automobile industries to improve structural safety.The present work deals with the collapse behavior of double-cell conical tubes subjected to dynamic axial and oblique loads...Thin-walled tubes are increasingly used in automobile industries to improve structural safety.The present work deals with the collapse behavior of double-cell conical tubes subjected to dynamic axial and oblique loads.Crashworthiness of these tubes having different sections(e.g.,circular,square,hexagonal,octagonal,decagonal)was numerically investigated by using an experimentally validated finite element model generated in LS-DYNA.Geometry of these tubes was then optimized by decreasing the cross section dimensions at the distal end while the weight remained unchanged.Octagonal conical tube was finally found to be more preferable to the others as a collision energy absorber.In addition,square and circular tubes showed diamond deformation mode,while the other tubes collapsed in concertina mode.A decision making method called TOPSIS was finally implemented on the numerical results to select the most efficient energy absorber.展开更多
Elastic heat transfer tube bundles are widely used in the field of flow-induced vibration heat transfer enhancement. Two types of mainly used tube bundles, the planar elastic tube bundle and the conical spiral tube bu...Elastic heat transfer tube bundles are widely used in the field of flow-induced vibration heat transfer enhancement. Two types of mainly used tube bundles, the planar elastic tube bundle and the conical spiral tube bundle were comprehensively compared in the condition of the same shell side diameter. The natural mode characteristics, the effect of fluid-structure interaction, the stress distribution, the comprehensive heat transfer performance and the secondary fluid flow of the two elastic tube bundles were all concluded and compared. The results show that the natural frequency and the critical velocity of vibration buckling of the planar elastic tube bundle are larger than those of the conical spiral tube bundle, while the stress distribution and the comprehensive heat transfer performance of the conical spiral tube bundle are relatively better.展开更多
The selected modifications to the construction of grinding wheels were described which facilitate an increase in the material removal rate (grinding wheels with conic chamfer and grinding wheels with microdiscontinui...The selected modifications to the construction of grinding wheels were described which facilitate an increase in the material removal rate (grinding wheels with conic chamfer and grinding wheels with microdiscontinuities on the active surface). Using these background details, a suggested thesis was put forward regarding the need to develop a device which will allow for the shaping of the macrogeometry of the grinding wheel (cylindrical and conical surfaces) and the microdiscontinuities within the dressing operation simultaneously. The device was presented and prepared in two functional variants (horizontal and vertical mounting of the motor), then a prototype was described. An example of the grinding wheel active surface, shaped by using this device, was also presented. The theoretical analysis and experimental verification performed determine that the error of shaping the conic chamfer angle within the range of 0-1.5°, using the developed device, is approximately ±3%.展开更多
The original idea and shaping principle of locus shaping method for processing the aspheric optical parts are introduced, and the partial structure of the machine tool designed is described. The method has the advanta...The original idea and shaping principle of locus shaping method for processing the aspheric optical parts are introduced, and the partial structure of the machine tool designed is described. The method has the advantage of high efficiency and low cost compared to the numerical control method. And it is proven that the method is feasible.展开更多
The compact ortho-mode transducer (OMT) and compact conical corrugated horn(CCCH) are used as feeding system of the deployable dual polarizing antenna in this paper.A new stricture of double-septum in main wave guide ...The compact ortho-mode transducer (OMT) and compact conical corrugated horn(CCCH) are used as feeding system of the deployable dual polarizing antenna in this paper.A new stricture of double-septum in main wave guide OMT is proposed. The finite difference method in time domain (FDTD) in combination with genetic algorithms(GAs) is used to analysis and optimize this new OMT. The experiment results show that the voltage standing wave ratio (VSWR) of this OMT and feeding system is less than 1.17 in bandwidth; the isolation between the ortho-mode ports is less than -40dB; the cross-polar level of the feed can reach -35dB and the length of the main waveguide can be reduced 50% at least.展开更多
Conical picks are important tools for rock mechanical excavation.Mean cutting force(MCF)of conical pick determines the suitability of the target rock for mechanical excavation.Accurate evaluation of MCF is important f...Conical picks are important tools for rock mechanical excavation.Mean cutting force(MCF)of conical pick determines the suitability of the target rock for mechanical excavation.Accurate evaluation of MCF is important for pick design and rock cutting.This study proposed hybrid methods composed of boosting trees and Bayesian optimization(BO)for accurate evaluation of MCF.220 datasets including uniaxial compression strength,tensile strength,tip angle(θ),attack angle,and cutting depth,were collected.Four boosting trees were developed based on the database to predict MCF.BO optimized the hyper-parameters of these boosting trees.Model evaluation suggested that the proposed hybrid models outperformed many commonly utilized machine learning models.The hybrid model composed of BO and categorical boosting(BO-CatBoost)was the best.Its outstanding performance was attributed to its advantages in dealing with categorical features(θincluded 6 types of angles and could be considered as categorical features).A graphical user interface was developed to facilitate the application of BO-CatBoost for the estimation of MCF.Moreover,the influences of the input parameters on the model and their relationship with MCF were analyzed.Whenθincreased from 80°to 90°,it had a significant contribution to the increase of MCF.展开更多
The method for pulling large diameter single crystals with the abovesaid difficulties avoided is developed.Here the free melt surface does not depend on the growing crystal diameter and remains minimal during the whol...The method for pulling large diameter single crystals with the abovesaid difficulties avoided is developed.Here the free melt surface does not depend on the growing crystal diameter and remains minimal during the whole growing process.The essence of this method is that at the stage of radial crystal growth the melt level in the crucible of a variable cross-section(for instance,in a conical crucible)is raised.展开更多
基金Supported by the National Natural Science Foundation of China(11971450)partially supported by the Project of Stable Support for Youth Team in Basic Research Field,CAS(YSBR-001)。
文摘In this paper,we introduce and prove three analytic results related to uniform convergence,properties of Newtonian potential,and convergence of sequences in Sobolev space constrained by their Laplacian.Then,utilizing our analytic results,we develop a complete proof of a crucial estimate appearing in the results of Guofang Wang and Xiaohua Zhu,which states the classification of extremal Hermitian metrics with finite energy and area on compact Riemann surfaces and finite singularities satisfying small singular angles.
文摘This study aims to develop a framework based on the Nadal formula to assess train derailment risk. Monte Carlo simulation was adopted to develop 10000 sets of random parameters to assess train derailment risk subject to the curvature radius of the track, the difference between the flange angle and the equivalent conicity, and accelerations from 250 to 989.22 gal during horizontal earthquake. The results indicated that railway in Taiwan, China has no derailment risk under normal conditions. However, when earthquakes occur, the derailment risk increases with the unloading factor which is caused by seismic force. The results also show that equivalent conicity increases derailment risk;as a result, equivalent conicity should be listed as one of maintenance priorities. In addition, among all train derailment factors, flange angle, equivalent conicity and unload factors are the most significant ones.
文摘The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle hole were analyzed.Results show that the inner conicity of nozzle hole inhibits the development of cavitation phenomena,and increases the injection rate.While the outer conicity of nozzle hole promotes the diffusion of cavita-tion,leading to reductions of the liquid volume fraction of the nozzle outlet and the local flow resistance of the nozzle hole.The sensitivity of cycle fuel mass to inner-cone nozzle hole is stronger than that of the outer-cone noz-zle,especially at the smaller hole conicity.The increase of injection pressure enhances the sensitivity of the injection characteristics to the nozzle hole structure,in which inner-cone nozzle has higher sensitivity coefficient than the outer-cone nozzle hole.However,the increase of injection pressure aggravates the offset of liquid jet to the nozzle axis of the outer-cone nozzle hole.With the increase of the inner conicity of nozzle,the sensitivity of the injection characteristics to the entrance radius of the hole decreases.With the increase of the outer conicity of nozzle hole,the sensitivity of the injection characteristics to the entrance radius of the hole increases.
基金Project(51005232) supported by the National Natural Science Foundation of ChinaProject(20100481176) supported by the China Postdoctoral Science Foundation+1 种基金Project(201104583) supported by the China Postdoctoral Special FundProject(1101106c) supported by Jiangsu Postdoctoral Foundation, China
文摘In order to obtain the determining method of the installing angle and decrease the performance indices (cutting force and wearing rate) of the pick, the relationships among the installing angles (impact angle, inclination angle and the skew angle) were studied, and the static model of installing angles of the pick was built. The relationships among the impact angle, the tip angle of pick and the kinematics parameters of the pick were built, too. Moreover, the mechanic models of the maximum clearance angle and the wearing angle of the pick were set up. To research the relationships of the installing angles and the change law of the wearing angle along with the kinematics parameters, the simulation was done. In order to verify the correctness of the models, the cutting experiments were done by employing two picks with different pick tip angles. The results indicate that, the cutting force is the smallest when the direction of the resultant force of pick follows its axis, and the relationship derived among the installing angles should be satisfied. In addition, to decrease the cutting force and the wearing of the pick, the tip angle of pick should not be larger than the half of the difference between the minimum wearing angle and the impact angle of the pick, and the clearance angle must not be less than zero.
文摘The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic foundation(T-P-EF).It is one of the first attempts to derive the governing equations of the CCSs reinforced with CNTs,based on a generalized first-order shear deformation shell theory(FSDST)which includes shell-foundation interaction.By adopting the extended mixing rule,the effective material properties of CCSs reinforced by CNTs with linear distributions are approximated by introducing some efficiency parameters.Three carbon nanotube distribution in the matrix,i.e.uniform distribution(U)and V and X-types linear distribution are taken into account.The stability equations are solved by using the Galerkin procedure to determine the combined buckling loads(CBLs)of the structure selected here.The numerical illustrations cover CBLs characteristics of CCSs reinforced by CNTs in the presence of the T-P-EF.Finally,a parametric study is carried out to study the influences of the foundation parameters,the volume fraction of carbon nanotubes and the types of reinforcement on the CBLs.
基金Projects(59375211,10771178,10676031) supported by the National Natural Science Foundation of ChinaProject(07A068) supported by the Key Project of Hunan Education CommissionProject(2005CB321702) supported by the National Key Basic Research Program of China
文摘The internal turbulent flow in conical diffuser is a very complicated adverse pressure gradient flow.DLR k-ε turbulence model was adopted to study it.The every terms of the Laplace operator in DLR k-ε turbulence model and pressure Poisson equation were discretized by upwind difference scheme.A new full implicit difference scheme of 5-point was constructed by using finite volume method and finite difference method.A large sparse matrix with five diagonals was formed and was stored by three arrays of one dimension in a compressed mode.General iterative methods do not work wel1 with large sparse matrix.With algebraic multigrid method(AMG),linear algebraic system of equations was solved and the precision was set at 10-6.The computation results were compared with the experimental results.The results show that the computation results have a good agreement with the experiment data.The precision of computational results and numerical simulation efficiency are greatly improved.
基金Project(51775479)supported by the National Natural Science Foundation of ChinaProject(E2017203046)supported by the Natural Science Foundation of Hebei Province,China
文摘A two-pass annealing/quenching internal spinning process with small-end rotations is proposed to form a curved generatrix conical thin-walled shell.That is,annealing at 360°C for 2 h followed by the 1st pass spinning,and finally quenching in ice water after holding for 1 h at 498°C followed by the 2nd pass spinning.ABAQUS finite element software is used to simulate the internal spinning process of the products formed under different forming parameters.The distribution laws of spinning force,the stress and strain under different forming processes were compared and analyzed.The mechanical properties and microstructure of the products are subsequently analyzed.The results show that the strain and the residual stress in the skin area of the formed products under two-pass spinning process more uniform,and the hardness and the mechanical performance are improved.The microstructure of the products formed with the 0.15 mm thickness reduction at the 2nd pass is excellent.And the second phase grain size distributed uniformly in the range of 36μm.Whereas,the second phase particles are broken seriously and the size distribution inhomogeneity is increased when the thickness reduction in the skin area is greater than 0.20 mm at the 2nd pass spinning process.
基金Project(660)supported by University of Mohaghegh Ardabili,Iran
文摘In this paper,crashworthiness performance of multi-cell conical tubes with new sectional configuration design(i.e.square,hexagonal,octagonal,decagon and circular)has been evaluated under axial and three different oblique loads.The same weight conical tubes were comparatively studied using an experimentally validated finite element model generated in LS-DYNA.Complex proportional assessment(COPRAS)method was then employed to select the most efficient tube using two conflicting criteria,namely peak collapse force(PCF)and energy absorption(EA).From the COPRAS calculations,the multi-cell conical tube with decagonal cross-section(MCDT)showed the best crashworthiness performance.Furthermore,the effects of possible number of inside ribs on the crashworthiness of the decagonal conical tubes were also evaluated,and the results displayed that the tubes performed better as the number of ribs increased.Finally,parameters(the cone angle,θ,and ratio of the internal tube size to the external one,S)of MCDT were optimized by adopting artificial neural networks(ANN)and genetic algorithm(GA)techniques.Based on the multi-objective optimization results,the optimum dimension parameters were found to beθ=7.9o,S=0.46 andθ=8o,S=0.74 from the minimum distance selection(MDS)and COPRAS methods,respectively.
基金Project(660)supported by University of Mohaghegh Ardabili,Iran
文摘Thin-walled tubes are increasingly used in automobile industries to improve structural safety.The present work deals with the collapse behavior of double-cell conical tubes subjected to dynamic axial and oblique loads.Crashworthiness of these tubes having different sections(e.g.,circular,square,hexagonal,octagonal,decagonal)was numerically investigated by using an experimentally validated finite element model generated in LS-DYNA.Geometry of these tubes was then optimized by decreasing the cross section dimensions at the distal end while the weight remained unchanged.Octagonal conical tube was finally found to be more preferable to the others as a collision energy absorber.In addition,square and circular tubes showed diamond deformation mode,while the other tubes collapsed in concertina mode.A decision making method called TOPSIS was finally implemented on the numerical results to select the most efficient energy absorber.
基金Projects(xjj2013104,08143063)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2011CB706606)supported by the National Basic Research Program of China
文摘Elastic heat transfer tube bundles are widely used in the field of flow-induced vibration heat transfer enhancement. Two types of mainly used tube bundles, the planar elastic tube bundle and the conical spiral tube bundle were comprehensively compared in the condition of the same shell side diameter. The natural mode characteristics, the effect of fluid-structure interaction, the stress distribution, the comprehensive heat transfer performance and the secondary fluid flow of the two elastic tube bundles were all concluded and compared. The results show that the natural frequency and the critical velocity of vibration buckling of the planar elastic tube bundle are larger than those of the conical spiral tube bundle, while the stress distribution and the comprehensive heat transfer performance of the conical spiral tube bundle are relatively better.
文摘The selected modifications to the construction of grinding wheels were described which facilitate an increase in the material removal rate (grinding wheels with conic chamfer and grinding wheels with microdiscontinuities on the active surface). Using these background details, a suggested thesis was put forward regarding the need to develop a device which will allow for the shaping of the macrogeometry of the grinding wheel (cylindrical and conical surfaces) and the microdiscontinuities within the dressing operation simultaneously. The device was presented and prepared in two functional variants (horizontal and vertical mounting of the motor), then a prototype was described. An example of the grinding wheel active surface, shaped by using this device, was also presented. The theoretical analysis and experimental verification performed determine that the error of shaping the conic chamfer angle within the range of 0-1.5°, using the developed device, is approximately ±3%.
文摘The original idea and shaping principle of locus shaping method for processing the aspheric optical parts are introduced, and the partial structure of the machine tool designed is described. The method has the advantage of high efficiency and low cost compared to the numerical control method. And it is proven that the method is feasible.
基金Sponsored by the 873 Plan by Ministry of Science and Technology of China ( 2006AA12Z1137)CSSAR Innovation Project ( 2007)
文摘The compact ortho-mode transducer (OMT) and compact conical corrugated horn(CCCH) are used as feeding system of the deployable dual polarizing antenna in this paper.A new stricture of double-septum in main wave guide OMT is proposed. The finite difference method in time domain (FDTD) in combination with genetic algorithms(GAs) is used to analysis and optimize this new OMT. The experiment results show that the voltage standing wave ratio (VSWR) of this OMT and feeding system is less than 1.17 in bandwidth; the isolation between the ortho-mode ports is less than -40dB; the cross-polar level of the feed can reach -35dB and the length of the main waveguide can be reduced 50% at least.
基金Project(52374153)supported by the National Natural Science Foundation of ChinaProject(2023zzts0726)supported by the Fundamental Research Funds for the Central Universities of Central South University,China。
文摘Conical picks are important tools for rock mechanical excavation.Mean cutting force(MCF)of conical pick determines the suitability of the target rock for mechanical excavation.Accurate evaluation of MCF is important for pick design and rock cutting.This study proposed hybrid methods composed of boosting trees and Bayesian optimization(BO)for accurate evaluation of MCF.220 datasets including uniaxial compression strength,tensile strength,tip angle(θ),attack angle,and cutting depth,were collected.Four boosting trees were developed based on the database to predict MCF.BO optimized the hyper-parameters of these boosting trees.Model evaluation suggested that the proposed hybrid models outperformed many commonly utilized machine learning models.The hybrid model composed of BO and categorical boosting(BO-CatBoost)was the best.Its outstanding performance was attributed to its advantages in dealing with categorical features(θincluded 6 types of angles and could be considered as categorical features).A graphical user interface was developed to facilitate the application of BO-CatBoost for the estimation of MCF.Moreover,the influences of the input parameters on the model and their relationship with MCF were analyzed.Whenθincreased from 80°to 90°,it had a significant contribution to the increase of MCF.
文摘The method for pulling large diameter single crystals with the abovesaid difficulties avoided is developed.Here the free melt surface does not depend on the growing crystal diameter and remains minimal during the whole growing process.The essence of this method is that at the stage of radial crystal growth the melt level in the crucible of a variable cross-section(for instance,in a conical crucible)is raised.