In sub nanometer carbon nanotubes,water exhibits unique dynamic characteristics,and in the high-frequency region of the infrared spectrum,where the stretching vibrations of the internal oxygen-hydrogen(O-H)bonds are c...In sub nanometer carbon nanotubes,water exhibits unique dynamic characteristics,and in the high-frequency region of the infrared spectrum,where the stretching vibrations of the internal oxygen-hydrogen(O-H)bonds are closely related to the hydrogen bonds(H-bonds)network between water molecules.Therefore,it is crucial to analyze the relationship between these two aspects.In this paper,the infrared spectrum and motion characteristics of the stretching vibrations of the O-H bonds in one-dimensional confined water(1DCW)and bulk water(BW)in(6,6)single-walled carbon nanotubes(SWNT)are studied by molecular dynamics simulations.The results show that the stretching vibrations of the two O-H bonds in 1DCW exhibit different frequencies in the infrared spectrum,while the O-H bonds in BW display two identical main frequency peaks.Further analysis using the spring oscillator model reveals that the difference in the stretching amplitude of the O-H bonds is the main factor causing the change in vibration frequency,where an increase in stretching amplitude leads to a decrease in spring stiffness and,consequently,a lower vibration frequency.A more in-depth study found that the interaction of H-bonds between water molecules is the fundamental cause of the increased stretching amplitude and decreased vibration frequency of the O-H bonds.Finally,by analyzing the motion trajectory of the H atoms,the dynamic differences between 1DCW and BW are clearly revealed.These findings provide a new perspective for understanding the behavior of water molecules at the nanoscale and are of significant importance in advancing the development of infrared spectroscopy detection technology.展开更多
The detonation of fuel-rich explosives yields combustible products that persistently burn upon mixing with ambient oxygen,releasing additional energy through a phenomenon known as the afterburning effect.This process ...The detonation of fuel-rich explosives yields combustible products that persistently burn upon mixing with ambient oxygen,releasing additional energy through a phenomenon known as the afterburning effect.This process greatly influences the evolution of confined blast loading and the subsequent structural response,which is crucial in confined blast scenarios.Given the complex nature of the reaction process,accurate analysis of the afterburning effect remains challenging.Previous studies have either overlooked the mechanisms of detonation product combustion or failed to provide experimental validation.This study introduces a three-dimensional model to effectively characterize the combustion of detonation products.The model integrates chemical reaction source terms into the governing equations to consider the combustion processes.Numerical simulations and experimental tests were conducted to analyze the combustion and energy release from the detonation products of fuel-rich explosives in confined spaces.Approximately 50%of the energy was released during the combustion of detonation products in a confined TNT explosion.Although the combustion of these products was much slower than the detonation process,it aligned with the dynamic response of the structure,which enhanced the explosive yield.Excluding afterburning from the analysis reduced the center-point deformation of the structure by 30%.Following the inclusion of afterburning,the simulated quasistatic pressure increased by approximately 45%.Subsequent comparisons highlighted the merits of the proposed approach over conventional methods.This approach eliminates the reliance on empirical parameters,such as the amount and rate of energy release during afterburning,thereby laying the foundation for understanding load evolution in more complex environments,such as ships,buildings,and underground tunnels.展开更多
The concept of TNT(Trinitrotoluene,C_7H_5N_3O_6)equivalence is often invoked to evaluate the performance and predict the explosion parameters of different types of explosives.However,due to its low prediction accuracy...The concept of TNT(Trinitrotoluene,C_7H_5N_3O_6)equivalence is often invoked to evaluate the performance and predict the explosion parameters of different types of explosives.However,due to its low prediction accuracy and limited application range,the use of TNT equivalence for predicting explosion parameters in a confined space is rare.Compared with explosions in free fields,the process of explosive energy release in a confined space is closely related to various factors such as oxygen balance,combustible components content,and surrounding oxygen content.Studies have shown that in a confined space,negative oxygen balance explosives react with surrounding oxygen during afterburning,resulting in additional energy release and enhanced blast effects.The mechanism of energy release during afterburning is highly complex,making it challenging to determine the TNT equivalence for blast effects in a confined space.Therefore,this remains an active area of research.In this study,internal blast experiments were conducted using TNT and three other explosives under both air and N_2(Nitrogen)conditions to obtain explosion parameters including blast wave overpressure,quasi-static pressure,and temperature.The influences of oxygen balance and external oxygen content on energy release are analyzed.The author proposes principles for determining TNT equivalence for internal explosions while verifying the accuracy of obtained blast parameters through calculations based on TNT equivalence.These findings can serve as references for predicting blast performance.展开更多
Pressure histories were tested in a 500-L chamber to identify the pressure load in confined explosion from aluminized explosives. Different aluminized explosives with Al/O, ranging from 0.25 to 1.23, were used. The re...Pressure histories were tested in a 500-L chamber to identify the pressure load in confined explosion from aluminized explosives. Different aluminized explosives with Al/O, ranging from 0.25 to 1.23, were used. The recorded pressure curves could express the reflection of initial shock wave and the after burning combustion of aluminum. As there is no objective way to gain quasi-static pressure(P_(QS)),method of multipoint averaging was used in smoothing the original pressure curves to gain the P_(QS). The P_(QS),rising time of pressure(t_(QS)) which stands for the duration of the initial reflected shock wave, and attenuation coefficient(ω) which stands for the supportive effects of the combustion of aluminum to the P_(QS) are used to characterize the pressure load in the confined explosion from aluminized explosives. The research results showed that the Al/O significantly affected the three characteristic quantities. With the increase of Al/O, the P_(QS) increased at first and decreased later, gaining maximum at Al/O=0.99; the t_(QS)sustained growth and the ω decreased at first and increased later, gaining minimum at AI/O=0.99.展开更多
In response to the demand for short-range detection of anti-smoke environment interference by laser fuzes,this study proposes a smoke environment simulation of non-uniform continuous point source diffusion and investi...In response to the demand for short-range detection of anti-smoke environment interference by laser fuzes,this study proposes a smoke environment simulation of non-uniform continuous point source diffusion and investigates an experimental laboratory smoke environment using an ammonium chloride smoke agent.The particle size distribution,composition,and mass flow distribution of the smoke were studied.Based on a discrete phase model and a kεturbulence model,a numerical simulation was developed to model the smoke generation and diffusion processes of the smoke agent in a confined space.The temporal and spatial distribution characteristics of the smoke mass concentration,velocity,and temperature in the space after smoke generation were analyzed,and the motion law governing the smoke diffusion throughout the entire space was summarized.Combined with the experimental verification of the smoke environment laboratory,the results showed that the smoke plume changed from fan-shaped to umbrella-shaped during smoke generation,and then continued to spread around.Meanwhile,the mass concentration of smoke in the space decreased from the middle outward;the changes in temperature and velocity were small and stable.In the diffusion stage(after 900 s),the mass concentration of smoke above 0.8 m was relatively uniform across an area of smoke that was 12 m thick.The concentration decreased over time,following a consistent decreasing trend,and the attenuation was negligible in a very short time.Therefore,this system was suitable for conducting experimental research on laser fuzes in a smoke environment.Owing to the stability of the equipment and facilities,the setup could reproduce the same experimental smoke environment by artificially controlling the smoke emission of the smoke agent.Overall,this work provides a theoretical reference for subsequent research efforts regarding the construction of uniform smoke environments and evaluating laser transmission characteristics in smoky environments.展开更多
The mitigation of blast shock with water has broad application prospects. Understanding the mitigation effects on the reflected overpressure of the explosion shock with water surrounding an explosive in a confined spa...The mitigation of blast shock with water has broad application prospects. Understanding the mitigation effects on the reflected overpressure of the explosion shock with water surrounding an explosive in a confined space is of great significance for military explosives safety applications. To estimate the effects of the parameters on the reflected overpressure of blasted shock wave, a series of experiments were carried out in confined containers with spherical explosives immersed in a certain thickness of water,and numerical simulations were conducted to explore the corresponding mechanisms. The results reveal that the reflected overpressure is abnormally aggravated at a small scaled distance. This aggravation is due to the high impulse of the bulk accelerated water shell converted from the explosion. With increasing scaled distance, the energy will be gradually dissipated. The mitigation effects will appear with the dispersed water phase front impacting at a larger scaled distance, except in the case of a dense water phase state. A critical scaled distance range of 0.7-0.8 m/kg^(1/3) for effective mitigation was found. It is suggested that the scaled distance of space walls should be larger than the critical value for a certain water-to-explosive weight ratio range(5-20).展开更多
The detonation of an explosive atmosphere from liquefied petroleum gas disseminated in air in a confined space is studied using numerical modeling with software product ANSYS AUTODYN.
Soft rock control is a big challenge in underground engineering.As for this problem,a high-strength support technique of confined concrete(CC)arches is proposed and studied in this paper.Based on full-scale mechanical...Soft rock control is a big challenge in underground engineering.As for this problem,a high-strength support technique of confined concrete(CC)arches is proposed and studied in this paper.Based on full-scale mechanical test system of arch,research is made on the failure mechanism and mechanical properties of CC arch.Then,a mechanical calculation model of circular section is established for the arches with arbitrary section and unequal rigidity;a calculation formula is deduced for the internal force of the arch;an analysis is made on the influence of different factors on the internal force of the arch;and a calculation formula is got for the bearing capacity of CC arch through the strength criterion of bearing capacity.With numerical calculation and laboratory experiment,the ultimate bearing capacity and internal force distribution is analyzed for CC arches.The research results show that:1)CC arch is 2.31 times higher in strength than the U-shaped steel arch and has better stability;2)The key damage position of the arch is the two sides;3)Theoretical analysis,numerical calculation and laboratory experiment have good consistency in the internal force distribution,bearing capacity,and deformation and failure modes of the arch.All of that verifies the correctness of the theoretical calculation.Based on the above results,a field experiment is carried out in Liangjia Mine.Compared with the U-shaped steel arch support,CC arch support is more effective in surrounding rock deformation control.The research results can provide a basis for the design of CC arch support in underground engineering.展开更多
In order to investigate the size effect and other effects on the stress-strain relationship of confined concrete, 42 specimens with different sizes and section shapes were placed under axial compression loading. Effec...In order to investigate the size effect and other effects on the stress-strain relationship of confined concrete, 42 specimens with different sizes and section shapes were placed under axial compression loading. Effects of key parameters such as size of specimens, tie configuration, transverse reinforcement ratio, and concrete cover were studied. The results show that for specimens with the same configuration and the same volumetric ratio of the transverse reinforcement, along with the increasing specimen size, the peak stress, peak strain and deformation of the post-peak show a down trend, however, the volumetric ratio of the transverse reinforcement is lowered, the decreasing of the peak stress is accelerated, but the decreasing of the deformation is slow down. For specimens with the same volumetric ratio but different configurations of transverse reinforcement, though the transverse reinforcement configuration becomes more complicated, the peak stress of the large size specimen does not improve more than that of the small size. However, the deformation occurs before the stress declines to 85% of peak stress, and the improvement with the grid pattern tie configuration is much greater due to size effect.展开更多
Instrumented experiments were conducted in concrete models to study the explosion-induced radial strain and fracture effect of rock-like media under confined explosion with a charge of cyclonite. As a charge was explo...Instrumented experiments were conducted in concrete models to study the explosion-induced radial strain and fracture effect of rock-like media under confined explosion with a charge of cyclonite. As a charge was exploded, two different radial strain waves were sequentially recorded by a strain gage at a distance of 80 mm from the center of charge. Through the attenuation formula of the maximum compressive strain(εrmax), the distribution of εrmax and its strain rate( ) between the charge and gage were obtained. The effect of the two waves propagating outwards on the radial fracture of surrounding media was discussed. The results show that the two waves are pertinent to the loading of shock energy (Es) and bubble energy (Eb) against concrete surrounding charge, respectively. The former wave lasts for much shorter time than the latter. The peak values of εrmax and of the former are higher than those of the latter, respectively.展开更多
An analytical approach was presented for estimating the factor of safety(FS) for slope failure, with consideration of the impact of a confined aquifer. An upward-moving wetting front from the confined water was assume...An analytical approach was presented for estimating the factor of safety(FS) for slope failure, with consideration of the impact of a confined aquifer. An upward-moving wetting front from the confined water was assumed and the pore water pressure distribution was then estimated and used to obtain the analytical expression of FS. Then, the validation of the theoretical analysis was applied based on an actual case in Hong Kong. It is shown that the presence of a confined aquifer leads to a lower FS value, and the impact rate of hydrostatic pressure on FS increases as the confined water pressure increases, approaching to a maximum value determined by the ratio of water density to saturated soil density. It is also presented that the contribution of hydrostatic pressure and hydrodynamic pressure to the slope stability vary with the confined aquifer pressure.展开更多
A layered charge composed of the JH-2 explosive enveloped by a thick-walled cylindrical casing(active aluminum/rubber and inert lithium fluoride/rubber composites) was designed and explosion experiments were conducted...A layered charge composed of the JH-2 explosive enveloped by a thick-walled cylindrical casing(active aluminum/rubber and inert lithium fluoride/rubber composites) was designed and explosion experiments were conducted in a 1.3 m3tank and a 113 m3bunker.The blast parameters,including the quasistatic pressure(ΔpQS),special impulse(I),and peak overpressure(Δpmax),and images of the explosion process were recorded,and the influence of the Al content(30% and 50%) and Al particle size(1,10,and 50 μm) on the energy release of aluminum/rubber composites were investigated.The results revealed that the use of an active layer increased the peak overpressure generated by the primary blast wave,as well as the quasistatic pressure and special impulse related to fuel burning within tens of milliseconds after detonation.When the Al content was increased from 30% to 50%,the increases of ΔpQS and I were not obvious,and Δpmaxeven decreased,possibly because of decreased combustion efficiency and greater absorption of the blast wave energy for layers with 50% Al.Compared with the pure JH-2charge,the charge with 1 μm Al particles produced the highest Δpmax,indicating that better transient blast performance was generated by smaller Al particles.However,the charge with 10 μm Al particles showed the largest ΔpQSand I,suggesting that a stronger destructive effect occurred over a longer duration for charges that contained moderate 10 μm Al.展开更多
In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confine...In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confined water on the limit support pressure of the tunnel face.This study employed the finite element method(FEM)to analyze the limit support pressure of shield tunnel face instability within a pressurized water-containing layer.Subsequently,a multiple linear regression approach was applied to derive a concise solution formula for the limit support pressure,incorporating various influencing factors.The analysis yields the following conclusions:1)The influence of confined water on the instability mode of the tunnel face in soft soil layers makes the displacement response of the strata not significant when the face is unstable;2)The limit support pressure increases approximately linearly with the pressure head,shield tunnel diameter,and tunnel burial depth.And inversely proportional to the thickness of the impermeable layer,soil cohesion and internal friction angle;3)Through an engineering case study analysis,the results align well with those obtained from traditional theoretical methods,thereby validating the rationality of the equations proposed in this paper.Furthermore,the proposed equations overcome the limitation of traditional theoretical approaches considering the influence of changes in impermeable layer thickness.It can accurately depict the dynamic variation in the required limit support pressure to maintain the stability of the tunnel face during shield tunneling,thus better reflecting engineering reality.展开更多
In this article, parametric study of single confined fragment launch device was carried out. The configuration proposed was further studied to derive the empirical relationship for effect of fragment size,charge size,...In this article, parametric study of single confined fragment launch device was carried out. The configuration proposed was further studied to derive the empirical relationship for effect of fragment size,charge size, confinement thickness on fragment velocity. The simulations were carried out using ANSYSAUTODYNE explicit solver. Fragment velocities were estimated as a function of different parametric combinations of explosive quantities, charge length to diameter ratio, fragment height to diameter ratio,confinement thickness, fragment material and fragment mass. The data was further converted to charge to metal ratio under fragment and confinement. It was observed that, increase in confinement thickness,charge quantity and decrease in fragment height increases the fragment velocity. It is also noted that,charge to metal mass ratio under fragment significantly affects the fragment velocity. At the end, an empirical relationship for fragment velocity interms of all these parameters was established. Using these relations, two velocities 1831.92 m/s and 2523.9 m/s required for NATO STANAG 4496 IM test were estimated. The design parameters for these velocities are presented. Also, the results estimated using the empirical relationship has been compared with published experimental data. Error in the predicted velocities is within the acceptable range. The empirical relationship proposed will be useful for finalization of design of the fragment launch device.展开更多
Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the succ...Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the successful application of the new method.In order to realize the stability control of the roadway surrounding rock,the mechanical model of the roof and rib support structure is established,and the influence mechanism of the automatically formed roadway parameters on the compound force is revealed.On this basis,the roof and rib support structure technology of confined lightweight concrete is proposed,and its mechanical tests under different eccentricity are carried out.The results show that the bearing capacity of confined lightweight concrete specimens is basically the same as that of ordinary confined concrete specimens.The bearing capacity of confined lightweight concrete specimens under different eccentricities is 1.95 times higher than those of U-shaped steel specimens.By comparing the test results with the theoretical calculated results of the confined concrete,the calculation method of the bearing capacity for the confined lightweight concrete structure is selected.The design method of confined lightweight concrete support structure is established,and is successfully applied in the extra-large mine,Ningtiaota Coal Mine,China.展开更多
A rapidprecipitation technique,confined mixing induced nano-precipitation is a novel,one-step method for producing nanoparti-cles(NPs)with adjustable size,high specific surface area,sta-ble morphological structure and...A rapidprecipitation technique,confined mixing induced nano-precipitation is a novel,one-step method for producing nanoparti-cles(NPs)with adjustable size,high specific surface area,sta-ble morphological structure and excellent surface and interfaceperformance.It is also called flash nano precipitation(FNP)asits mixing time is on the millisecond scale.A typical FNP processstarts withrapidly mixing a good solvent stream dissolving am-phiphilic copolymer and an anti-solvent stream of the copolymerin the space-confined and tiny chamber.The self-assembly andstability of the organic nanoparticles are achieved via rapid super-saturation and precipitation.展开更多
In this paper eight successive experimental blast tests with an increasing TNT equivalent charge weights ranging from 0.56 kg to 17.78 kg were conducted on unreinforced,ferrocemented overlay masonry and confined mason...In this paper eight successive experimental blast tests with an increasing TNT equivalent charge weights ranging from 0.56 kg to 17.78 kg were conducted on unreinforced,ferrocemented overlay masonry and confined masonry walls.The pressure-time history caused by the blast was recorded by pressure sensors installed on the test specimen.The resulting damage pattern was observed during each test.Weak zones in the three systems of masonry were identified.Scaled distances for different damage levels in the three masonry systems were experimentally obtained.The results provide a basis for determining the response of each masonry system against blast loading.Consequently,efficiency of ferrocemented overlay masonry and confined masonry was found established in mitigation against blast loads.展开更多
基金Supported by the Natural Science Foundation of China(51705326,52075339)。
文摘In sub nanometer carbon nanotubes,water exhibits unique dynamic characteristics,and in the high-frequency region of the infrared spectrum,where the stretching vibrations of the internal oxygen-hydrogen(O-H)bonds are closely related to the hydrogen bonds(H-bonds)network between water molecules.Therefore,it is crucial to analyze the relationship between these two aspects.In this paper,the infrared spectrum and motion characteristics of the stretching vibrations of the O-H bonds in one-dimensional confined water(1DCW)and bulk water(BW)in(6,6)single-walled carbon nanotubes(SWNT)are studied by molecular dynamics simulations.The results show that the stretching vibrations of the two O-H bonds in 1DCW exhibit different frequencies in the infrared spectrum,while the O-H bonds in BW display two identical main frequency peaks.Further analysis using the spring oscillator model reveals that the difference in the stretching amplitude of the O-H bonds is the main factor causing the change in vibration frequency,where an increase in stretching amplitude leads to a decrease in spring stiffness and,consequently,a lower vibration frequency.A more in-depth study found that the interaction of H-bonds between water molecules is the fundamental cause of the increased stretching amplitude and decreased vibration frequency of the O-H bonds.Finally,by analyzing the motion trajectory of the H atoms,the dynamic differences between 1DCW and BW are clearly revealed.These findings provide a new perspective for understanding the behavior of water molecules at the nanoscale and are of significant importance in advancing the development of infrared spectroscopy detection technology.
基金supported by the National Natural Science Foundation of China(Grant Nos.52171318 and 12202329)Joint Foundation of the Ministry of Education(Grant No.8091B022105)。
文摘The detonation of fuel-rich explosives yields combustible products that persistently burn upon mixing with ambient oxygen,releasing additional energy through a phenomenon known as the afterburning effect.This process greatly influences the evolution of confined blast loading and the subsequent structural response,which is crucial in confined blast scenarios.Given the complex nature of the reaction process,accurate analysis of the afterburning effect remains challenging.Previous studies have either overlooked the mechanisms of detonation product combustion or failed to provide experimental validation.This study introduces a three-dimensional model to effectively characterize the combustion of detonation products.The model integrates chemical reaction source terms into the governing equations to consider the combustion processes.Numerical simulations and experimental tests were conducted to analyze the combustion and energy release from the detonation products of fuel-rich explosives in confined spaces.Approximately 50%of the energy was released during the combustion of detonation products in a confined TNT explosion.Although the combustion of these products was much slower than the detonation process,it aligned with the dynamic response of the structure,which enhanced the explosive yield.Excluding afterburning from the analysis reduced the center-point deformation of the structure by 30%.Following the inclusion of afterburning,the simulated quasistatic pressure increased by approximately 45%.Subsequent comparisons highlighted the merits of the proposed approach over conventional methods.This approach eliminates the reliance on empirical parameters,such as the amount and rate of energy release during afterburning,thereby laying the foundation for understanding load evolution in more complex environments,such as ships,buildings,and underground tunnels.
文摘The concept of TNT(Trinitrotoluene,C_7H_5N_3O_6)equivalence is often invoked to evaluate the performance and predict the explosion parameters of different types of explosives.However,due to its low prediction accuracy and limited application range,the use of TNT equivalence for predicting explosion parameters in a confined space is rare.Compared with explosions in free fields,the process of explosive energy release in a confined space is closely related to various factors such as oxygen balance,combustible components content,and surrounding oxygen content.Studies have shown that in a confined space,negative oxygen balance explosives react with surrounding oxygen during afterburning,resulting in additional energy release and enhanced blast effects.The mechanism of energy release during afterburning is highly complex,making it challenging to determine the TNT equivalence for blast effects in a confined space.Therefore,this remains an active area of research.In this study,internal blast experiments were conducted using TNT and three other explosives under both air and N_2(Nitrogen)conditions to obtain explosion parameters including blast wave overpressure,quasi-static pressure,and temperature.The influences of oxygen balance and external oxygen content on energy release are analyzed.The author proposes principles for determining TNT equivalence for internal explosions while verifying the accuracy of obtained blast parameters through calculations based on TNT equivalence.These findings can serve as references for predicting blast performance.
文摘Pressure histories were tested in a 500-L chamber to identify the pressure load in confined explosion from aluminized explosives. Different aluminized explosives with Al/O, ranging from 0.25 to 1.23, were used. The recorded pressure curves could express the reflection of initial shock wave and the after burning combustion of aluminum. As there is no objective way to gain quasi-static pressure(P_(QS)),method of multipoint averaging was used in smoothing the original pressure curves to gain the P_(QS). The P_(QS),rising time of pressure(t_(QS)) which stands for the duration of the initial reflected shock wave, and attenuation coefficient(ω) which stands for the supportive effects of the combustion of aluminum to the P_(QS) are used to characterize the pressure load in the confined explosion from aluminized explosives. The research results showed that the Al/O significantly affected the three characteristic quantities. With the increase of Al/O, the P_(QS) increased at first and decreased later, gaining maximum at Al/O=0.99; the t_(QS)sustained growth and the ω decreased at first and increased later, gaining minimum at AI/O=0.99.
基金the Central University Special Funding for Basic Scientific Research(Grant No.30918012201)the Foundation of JWKJW Field(Grant 2020-JCJQ-JJ-392)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX20_0315).
文摘In response to the demand for short-range detection of anti-smoke environment interference by laser fuzes,this study proposes a smoke environment simulation of non-uniform continuous point source diffusion and investigates an experimental laboratory smoke environment using an ammonium chloride smoke agent.The particle size distribution,composition,and mass flow distribution of the smoke were studied.Based on a discrete phase model and a kεturbulence model,a numerical simulation was developed to model the smoke generation and diffusion processes of the smoke agent in a confined space.The temporal and spatial distribution characteristics of the smoke mass concentration,velocity,and temperature in the space after smoke generation were analyzed,and the motion law governing the smoke diffusion throughout the entire space was summarized.Combined with the experimental verification of the smoke environment laboratory,the results showed that the smoke plume changed from fan-shaped to umbrella-shaped during smoke generation,and then continued to spread around.Meanwhile,the mass concentration of smoke in the space decreased from the middle outward;the changes in temperature and velocity were small and stable.In the diffusion stage(after 900 s),the mass concentration of smoke above 0.8 m was relatively uniform across an area of smoke that was 12 m thick.The concentration decreased over time,following a consistent decreasing trend,and the attenuation was negligible in a very short time.Therefore,this system was suitable for conducting experimental research on laser fuzes in a smoke environment.Owing to the stability of the equipment and facilities,the setup could reproduce the same experimental smoke environment by artificially controlling the smoke emission of the smoke agent.Overall,this work provides a theoretical reference for subsequent research efforts regarding the construction of uniform smoke environments and evaluating laser transmission characteristics in smoky environments.
基金funded by National Natural Science Foundation of China, grant ID: 11172245。
文摘The mitigation of blast shock with water has broad application prospects. Understanding the mitigation effects on the reflected overpressure of the explosion shock with water surrounding an explosive in a confined space is of great significance for military explosives safety applications. To estimate the effects of the parameters on the reflected overpressure of blasted shock wave, a series of experiments were carried out in confined containers with spherical explosives immersed in a certain thickness of water,and numerical simulations were conducted to explore the corresponding mechanisms. The results reveal that the reflected overpressure is abnormally aggravated at a small scaled distance. This aggravation is due to the high impulse of the bulk accelerated water shell converted from the explosion. With increasing scaled distance, the energy will be gradually dissipated. The mitigation effects will appear with the dispersed water phase front impacting at a larger scaled distance, except in the case of a dense water phase state. A critical scaled distance range of 0.7-0.8 m/kg^(1/3) for effective mitigation was found. It is suggested that the scaled distance of space walls should be larger than the critical value for a certain water-to-explosive weight ratio range(5-20).
文摘The detonation of an explosive atmosphere from liquefied petroleum gas disseminated in air in a confined space is studied using numerical modeling with software product ANSYS AUTODYN.
基金Projects(51674154,51704125,51874188) supported by the National Natural Science Foundation of ChinaProjects(2017T100116,2017T100491,2016M590150,2016M602144) supported by the China Postdoctoral Science Foundation+2 种基金Projects(2017GGX30101,2018GGX109001,ZR2017QEE013) supported by the Natural Science Foundation of Shandong Province,ChinaProject(SKLCRSM18KF012) supported by the State Key Laboratory of Coal Resources and Safe Mining,ChinaProject(2018WLJH76) supported by the Young Scholars Program of Shandong University,China
文摘Soft rock control is a big challenge in underground engineering.As for this problem,a high-strength support technique of confined concrete(CC)arches is proposed and studied in this paper.Based on full-scale mechanical test system of arch,research is made on the failure mechanism and mechanical properties of CC arch.Then,a mechanical calculation model of circular section is established for the arches with arbitrary section and unequal rigidity;a calculation formula is deduced for the internal force of the arch;an analysis is made on the influence of different factors on the internal force of the arch;and a calculation formula is got for the bearing capacity of CC arch through the strength criterion of bearing capacity.With numerical calculation and laboratory experiment,the ultimate bearing capacity and internal force distribution is analyzed for CC arches.The research results show that:1)CC arch is 2.31 times higher in strength than the U-shaped steel arch and has better stability;2)The key damage position of the arch is the two sides;3)Theoretical analysis,numerical calculation and laboratory experiment have good consistency in the internal force distribution,bearing capacity,and deformation and failure modes of the arch.All of that verifies the correctness of the theoretical calculation.Based on the above results,a field experiment is carried out in Liangjia Mine.Compared with the U-shaped steel arch support,CC arch support is more effective in surrounding rock deformation control.The research results can provide a basis for the design of CC arch support in underground engineering.
基金Project(50838001) supported by the National Natural Science Foundation of China
文摘In order to investigate the size effect and other effects on the stress-strain relationship of confined concrete, 42 specimens with different sizes and section shapes were placed under axial compression loading. Effects of key parameters such as size of specimens, tie configuration, transverse reinforcement ratio, and concrete cover were studied. The results show that for specimens with the same configuration and the same volumetric ratio of the transverse reinforcement, along with the increasing specimen size, the peak stress, peak strain and deformation of the post-peak show a down trend, however, the volumetric ratio of the transverse reinforcement is lowered, the decreasing of the peak stress is accelerated, but the decreasing of the deformation is slow down. For specimens with the same volumetric ratio but different configurations of transverse reinforcement, though the transverse reinforcement configuration becomes more complicated, the peak stress of the large size specimen does not improve more than that of the small size. However, the deformation occurs before the stress declines to 85% of peak stress, and the improvement with the grid pattern tie configuration is much greater due to size effect.
文摘Instrumented experiments were conducted in concrete models to study the explosion-induced radial strain and fracture effect of rock-like media under confined explosion with a charge of cyclonite. As a charge was exploded, two different radial strain waves were sequentially recorded by a strain gage at a distance of 80 mm from the center of charge. Through the attenuation formula of the maximum compressive strain(εrmax), the distribution of εrmax and its strain rate( ) between the charge and gage were obtained. The effect of the two waves propagating outwards on the radial fracture of surrounding media was discussed. The results show that the two waves are pertinent to the loading of shock energy (Es) and bubble energy (Eb) against concrete surrounding charge, respectively. The former wave lasts for much shorter time than the latter. The peak values of εrmax and of the former are higher than those of the latter, respectively.
基金Project(R5110012)supported by Special Foundation for Distinguished Young Scholars of Zhejiang Province,ChinaProject(2009C33117)supported by The General Program of Natural Science Foundation of Zhejiang Province,China
文摘An analytical approach was presented for estimating the factor of safety(FS) for slope failure, with consideration of the impact of a confined aquifer. An upward-moving wetting front from the confined water was assumed and the pore water pressure distribution was then estimated and used to obtain the analytical expression of FS. Then, the validation of the theoretical analysis was applied based on an actual case in Hong Kong. It is shown that the presence of a confined aquifer leads to a lower FS value, and the impact rate of hydrostatic pressure on FS increases as the confined water pressure increases, approaching to a maximum value determined by the ratio of water density to saturated soil density. It is also presented that the contribution of hydrostatic pressure and hydrodynamic pressure to the slope stability vary with the confined aquifer pressure.
基金funded by the National Natural Science Foundation of China(Grant No.11972018)the Defense Pre-Research Joint Foundation of Chinese Ordnance Industry(Grant No.6141B012858)。
文摘A layered charge composed of the JH-2 explosive enveloped by a thick-walled cylindrical casing(active aluminum/rubber and inert lithium fluoride/rubber composites) was designed and explosion experiments were conducted in a 1.3 m3tank and a 113 m3bunker.The blast parameters,including the quasistatic pressure(ΔpQS),special impulse(I),and peak overpressure(Δpmax),and images of the explosion process were recorded,and the influence of the Al content(30% and 50%) and Al particle size(1,10,and 50 μm) on the energy release of aluminum/rubber composites were investigated.The results revealed that the use of an active layer increased the peak overpressure generated by the primary blast wave,as well as the quasistatic pressure and special impulse related to fuel burning within tens of milliseconds after detonation.When the Al content was increased from 30% to 50%,the increases of ΔpQS and I were not obvious,and Δpmaxeven decreased,possibly because of decreased combustion efficiency and greater absorption of the blast wave energy for layers with 50% Al.Compared with the pure JH-2charge,the charge with 1 μm Al particles produced the highest Δpmax,indicating that better transient blast performance was generated by smaller Al particles.However,the charge with 10 μm Al particles showed the largest ΔpQSand I,suggesting that a stronger destructive effect occurred over a longer duration for charges that contained moderate 10 μm Al.
基金Project(ZDRW-ZS-2021-3)supported by the Key Deployment Projects of Chinese Academy of SciencesProjects(52179116,51991392)supported by the National Natural Science Foundation of China。
文摘In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confined water on the limit support pressure of the tunnel face.This study employed the finite element method(FEM)to analyze the limit support pressure of shield tunnel face instability within a pressurized water-containing layer.Subsequently,a multiple linear regression approach was applied to derive a concise solution formula for the limit support pressure,incorporating various influencing factors.The analysis yields the following conclusions:1)The influence of confined water on the instability mode of the tunnel face in soft soil layers makes the displacement response of the strata not significant when the face is unstable;2)The limit support pressure increases approximately linearly with the pressure head,shield tunnel diameter,and tunnel burial depth.And inversely proportional to the thickness of the impermeable layer,soil cohesion and internal friction angle;3)Through an engineering case study analysis,the results align well with those obtained from traditional theoretical methods,thereby validating the rationality of the equations proposed in this paper.Furthermore,the proposed equations overcome the limitation of traditional theoretical approaches considering the influence of changes in impermeable layer thickness.It can accurately depict the dynamic variation in the required limit support pressure to maintain the stability of the tunnel face during shield tunneling,thus better reflecting engineering reality.
文摘In this article, parametric study of single confined fragment launch device was carried out. The configuration proposed was further studied to derive the empirical relationship for effect of fragment size,charge size, confinement thickness on fragment velocity. The simulations were carried out using ANSYSAUTODYNE explicit solver. Fragment velocities were estimated as a function of different parametric combinations of explosive quantities, charge length to diameter ratio, fragment height to diameter ratio,confinement thickness, fragment material and fragment mass. The data was further converted to charge to metal ratio under fragment and confinement. It was observed that, increase in confinement thickness,charge quantity and decrease in fragment height increases the fragment velocity. It is also noted that,charge to metal mass ratio under fragment significantly affects the fragment velocity. At the end, an empirical relationship for fragment velocity interms of all these parameters was established. Using these relations, two velocities 1831.92 m/s and 2523.9 m/s required for NATO STANAG 4496 IM test were estimated. The design parameters for these velocities are presented. Also, the results estimated using the empirical relationship has been compared with published experimental data. Error in the predicted velocities is within the acceptable range. The empirical relationship proposed will be useful for finalization of design of the fragment launch device.
基金Project(2023YFC2907600)supported by the National Key Research and Development Program of ChinaProjects(42077267,42277174,52074164)supported by the National Natural Science Foundation of ChinaProject(2024JCCXSB01)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the successful application of the new method.In order to realize the stability control of the roadway surrounding rock,the mechanical model of the roof and rib support structure is established,and the influence mechanism of the automatically formed roadway parameters on the compound force is revealed.On this basis,the roof and rib support structure technology of confined lightweight concrete is proposed,and its mechanical tests under different eccentricity are carried out.The results show that the bearing capacity of confined lightweight concrete specimens is basically the same as that of ordinary confined concrete specimens.The bearing capacity of confined lightweight concrete specimens under different eccentricities is 1.95 times higher than those of U-shaped steel specimens.By comparing the test results with the theoretical calculated results of the confined concrete,the calculation method of the bearing capacity for the confined lightweight concrete structure is selected.The design method of confined lightweight concrete support structure is established,and is successfully applied in the extra-large mine,Ningtiaota Coal Mine,China.
文摘A rapidprecipitation technique,confined mixing induced nano-precipitation is a novel,one-step method for producing nanoparti-cles(NPs)with adjustable size,high specific surface area,sta-ble morphological structure and excellent surface and interfaceperformance.It is also called flash nano precipitation(FNP)asits mixing time is on the millisecond scale.A typical FNP processstarts withrapidly mixing a good solvent stream dissolving am-phiphilic copolymer and an anti-solvent stream of the copolymerin the space-confined and tiny chamber.The self-assembly andstability of the organic nanoparticles are achieved via rapid super-saturation and precipitation.
文摘In this paper eight successive experimental blast tests with an increasing TNT equivalent charge weights ranging from 0.56 kg to 17.78 kg were conducted on unreinforced,ferrocemented overlay masonry and confined masonry walls.The pressure-time history caused by the blast was recorded by pressure sensors installed on the test specimen.The resulting damage pattern was observed during each test.Weak zones in the three systems of masonry were identified.Scaled distances for different damage levels in the three masonry systems were experimentally obtained.The results provide a basis for determining the response of each masonry system against blast loading.Consequently,efficiency of ferrocemented overlay masonry and confined masonry was found established in mitigation against blast loads.