期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
MABAC method for multiple attribute group decision making under q-rung orthopair fuzzy environment 被引量:8
1
作者 Jie Wang Guiwu Wei +1 位作者 Cun Wei Yu Wei 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第1期208-216,共9页
As the generalization of intuitionistic fuzzy set(IFS) and Pythagorean fuzzy set(PFS),the q-rung orthopair fuzzy set(q-ROFS) has emerged as a more meaningful and effective tool to solve multiple attribute group decisi... As the generalization of intuitionistic fuzzy set(IFS) and Pythagorean fuzzy set(PFS),the q-rung orthopair fuzzy set(q-ROFS) has emerged as a more meaningful and effective tool to solve multiple attribute group decision making(MAGDM) problems in management and scientific domains.The MABAC(multi-attributive border approximation area comparison) model,which handles the complex and uncertain decision making issues by computing the distance between each alternative and the bored approximation area(BAA),has been investigated by an increasing number of researchers more recent years.In our article,consider the conventional MABAC model and some fundamental theories of q-rung orthopair fuzzy set(q-ROFS),we shall introduce the q-rung orthopair fuzzy MABAC model to solve MADM problems.at first,we briefly review some basic theories related to q-ROFS and conventional MABAC model.Furthermore,the q-rung orthopair fuzzy MABAC model is built and the decision making steps are described.In the end,An actual MADM application has been given to testify this new model and some comparisons between this novel MABAC modeL and two q-ROFNs aggregation operators are provided to further demonstrate the merits of the q-rung orthopair fuzzy MABAC model. 展开更多
关键词 MAGDM problems q-rung orthopair fuzzy sets(q-ROFSs) MABAC MODEL q-rung orthopair fuzzy weighted average(q-ROFWA)operators q-rung orthopair fuzzy weighted geometric(q-ROFWG)operators Q-ROFNs MABAC MODEL Construction project
在线阅读 下载PDF
基于置信水平和q阶orthopair正则模糊数的群决策方法
2
作者 王红娟 刘芳 《绿色科技》 2021年第12期246-250,共5页
在决策问题中由于一些限制因素,专家不可能百分之百对方案熟悉,并且正则模糊数要更接近于人类的决策思考比三角形和梯形模糊数。因此,根据置信q阶orthopair模糊加权平均、置信q阶orthopair模糊加权几何和正则模糊数,提出了置信q阶orthop... 在决策问题中由于一些限制因素,专家不可能百分之百对方案熟悉,并且正则模糊数要更接近于人类的决策思考比三角形和梯形模糊数。因此,根据置信q阶orthopair模糊加权平均、置信q阶orthopair模糊加权几何和正则模糊数,提出了置信q阶orthopair正则模糊加权平均(CNFWA)和置信q阶orthopair正则模糊加权几何(CNFWG)并且举例说明这两种算子的聚合。将一个多属性群决策方法提出根据CNFWA和CNFWG,通过实例说明如何用提出的多属性群决策方法从几个建筑公司里选出最优的一家公司,与基于q阶orthopair正则模糊加权平均(q-ROFNWA)、q阶orthopair正则模糊加权几何(q-ROFNWG)的多属性决策方法进行了比较,表明此方法更有效且更客观。 展开更多
关键词 q-rung orthopair模糊数 q阶orthopai正则模糊数 置信q阶orthopair正则模糊加权平均 多属性群决策方法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部