A condition-based maintenance model for gamma deteriorating system under continuous inspection is studied. This methodology uses a gamma distribution to model the material degradation, and the impact of imperfect main...A condition-based maintenance model for gamma deteriorating system under continuous inspection is studied. This methodology uses a gamma distribution to model the material degradation, and the impact of imperfect maintenance actions on the system reliability is investigated. The state of a degrading system immediately after the imperfect maintenance action is assumed as a random variable and the maintenance time follows a geometric process. Furthermore, the explicit expressions for the long-run average cost and availability per unit time of the system are evaluated, an optimal policy (ε^*) could be determined numeri- cally or analytically according to the optimization model. At last, a numerical example for a degrading system modeled by a gamma process is presented to demonstrate the use of this policy in practical applications.展开更多
Condition-based maintenance(CBM) is receiving increasing attention in various engineering systems because of its effectiveness. This paper formulates a new CBM optimization problem for continuously monitored degrading...Condition-based maintenance(CBM) is receiving increasing attention in various engineering systems because of its effectiveness. This paper formulates a new CBM optimization problem for continuously monitored degrading systems considering imperfect maintenance actions. In terms of maintenance actions,in practice, they scarcely restore the system to an as-good-as new state due to residual damage. According to up-to-data researches, imperfect maintenance actions are likely to speed up the degradation process. Regarding the developed CBM optimization strategy, it can balance the maintenance cost and the availability by the searching the optimal preventive maintenance threshold.The maximum number of maintenance is also considered, which is regarded as an availability constraint in the CBM optimization problem. A numerical example is introduced, and experimental results can demonstrate the novelty, feasibility and flexibility of the proposed CBM optimization strategy.展开更多
Most of the maintenance optimization models in condition-based maintenance(CBM) consider the cost-optimal criterion, but few papers have dealt with availability maximization for maintenance applications. A novel optim...Most of the maintenance optimization models in condition-based maintenance(CBM) consider the cost-optimal criterion, but few papers have dealt with availability maximization for maintenance applications. A novel optimal Bayesian control approach is presented for maintenance decision making. The system deterioration evolves as a three-state continuous time hidden semi-Markov process. Considering the optimal maintenance policy, the multivariate Bayesian control scheme based on the hidden semi-Markov model(HSMM) is developed, the objective is to maximize the long-run expected average availability per unit time. The proposed approach can optimize the sampling interval and control limit jointly. A case study using Markov chain Monte Carlo(MCMC)simulation is provided and a comparison with the Bayesian control scheme based on hidden Markov model(HMM), the age-based replacement policy, Hotelling’s T2, multivariate exponentially weihted moving average(MEWMA) and multivariate cumulative sum(MCUSUM) control charts is given, which illustrates the effectiveness of the proposed method.展开更多
An effective maintenance policy optimization model can reduce maintenance cost and system operation risk. For mission-oriented systems, the degradation process changes dynamically and is monotonous and irreversible. M...An effective maintenance policy optimization model can reduce maintenance cost and system operation risk. For mission-oriented systems, the degradation process changes dynamically and is monotonous and irreversible. Meanwhile, the risk of early failure is high. Therefore, this paper proposes a dynamic condition-based maintenance(CBM) optimization model for mission-oriented system based on inverse Gaussian(IG) degradation process. Firstly, the IG process with random drift coefficient is used to describe the degradation process and the relevant probability distributions are obtained. Secondly, the dynamic preventive maintenance threshold(DPMT) function is used to control the early failure risk of the mission-oriented system, and the influence of imperfect preventive maintenance(PM)on the degradation amount and degradation rate is analysed comprehensively. Thirdly, according to the mission availability requirement, the probability formulas of different types of renewal policies are obtained, and the CBM optimization model is constructed. Finally, a numerical example is presented to verify the proposed model. The comparison with the fixed PM threshold model and the sensitivity analysis show the effectiveness and application value of the optimization model.展开更多
A situation maintenance-based cooperative guidance strategy is proposed to intercept a high-speed and high-maneuverability target via inferior missiles.Reachability and relative motion analyses are conducted to develo...A situation maintenance-based cooperative guidance strategy is proposed to intercept a high-speed and high-maneuverability target via inferior missiles.Reachability and relative motion analyses are conducted to develop and pursue virtual targets,respectively.A two-stage guidance strategy under nonlinear kinematics is developed on the basis of virtual targets.The first stage optimizes the coverage and collision situation by pursuing virtual targets under specific angular constraints.The second stage subsequently intercepts the superior target based on the handover condition optimized by the first stage.Numerical simulation results are provided to compare the effectiveness and superiority of the proposed strategy with those of the reachability-based cooperative strategy(RCS),coverage-based cooperative guidance(CBCG)and augmented proportional navigation(APN)under various maneuvering modes.展开更多
This paper investigates the selective maintenance o systems that perform multi-mission in succession. Selective maintenance is performed on systems with limited break time to improve the success of the next mission. I...This paper investigates the selective maintenance o systems that perform multi-mission in succession. Selective maintenance is performed on systems with limited break time to improve the success of the next mission. In general, the duration of the mission is stochastic. However, existing studies rarely take into account system availability and the repairpersons with different skill levels. To solve this problem, a new multi-mission selective maintenance and repairpersons assignment model with stochastic duration of the mission are developed. To maximize the minimum phase-mission reliability while meeting the minimum system availability, the model is transformed into an optimization problem subject to limited maintenance resources. The optimization is then realized using an analytical method based on a self-programming function and a Monte Carlo simulation method, respectively. Finally, the validity of the model and solution method approaches are verified by numerical arithmetic examples. Comparative and sensitivity analyses are made to provide proven recommendations for decision-makers.展开更多
Although opportunistic maintenance strategies are widely used for multi-component systems, all opportunistic mainte- nance strategies only consider economic dependence and do not take structural dependence into accoun...Although opportunistic maintenance strategies are widely used for multi-component systems, all opportunistic mainte- nance strategies only consider economic dependence and do not take structural dependence into account. An opportunistic main- tenance strategy is presented for a multi-component system that considers both structural dependence and economic dependence. The cost relation and time relation among components based on structural dependence are developed. The maintenance strategy for each component of a multi-component system involves one of five maintenance actions, namely, no-maintenance, a minimal maintenance action, an imperfect maintenance action, a perfect maintenance action, and a replacement action. The maintenance action is determined by the virtual age of the component, the life expectancy of the component, and the age threshold values. Monte Carlo simulation is designed to obtain the optimal oppor- tunistic maintenance strategy of the system over its lifetime. The simulation result reveals that the minimum maintenance cost with a strategy that considers structural dependence is less than that with a strategy that does not consider structural dependence. The availability with a strategy that considers structural dependence is greater than that with a strategy that does not consider structural dependence under the same conditions.展开更多
An optimal replacement model for gamma deteriorating systems is studied. This methodology uses a gamma distribution to model the material degradation, and the impact of imperfect maintenance actions on the system reli...An optimal replacement model for gamma deteriorating systems is studied. This methodology uses a gamma distribution to model the material degradation, and the impact of imperfect maintenance actions on the system reliability is investigated. The state of a degrading system immediately after the imperfect maintenance action is assumed as a random variable and the maintenance time follows a geometric process. A maintenance policy (N) is applied by which the system will be repaired whenever it experiences Nth preventive maintenance (PM), and an optimal policy (N*) could be determined numerically or analytically for minimizing the long-run average cost per unit time. Finally, a numerical example is presented to demonstrate the use of this policy.展开更多
A collaborative optimization model for maintenance and spare ordering of a single-unit degrading system is proposed in this paper based on the continuous detection. A gamma distribution is used to model the material d...A collaborative optimization model for maintenance and spare ordering of a single-unit degrading system is proposed in this paper based on the continuous detection. A gamma distribution is used to model the material degradation. The degrading decrement after the imperfect maintenance action is assumed as a random variable normal distribution. This model aims to ob- tain the optimal maintenance policy and spare ordering point with the expected cost rate within system lifecycle as the optimization objective. The rationality and feasibility of the model are proved through a numerical example.展开更多
To maintain their capacity,transportation infrastructures are in need of regular maintenance and rehabilitation.The major challenge facing transportation engineers is the network-level policies to maintain the deterio...To maintain their capacity,transportation infrastructures are in need of regular maintenance and rehabilitation.The major challenge facing transportation engineers is the network-level policies to maintain the deteriorating roads at an acceptable level of serviceability.In this work,a quantitative transportation network efficiency measure is presented and then how to determine optimally network-level road maintenance policy depending on the road importance to the network performance has been demonstrated.The examples show that the different roads should be set different maintenance time points in terms of the retention capacities of the roads,because the different roads play different roles in network and have different important degrees to the network performance.This network-level road maintenance optimization method could not only save lots of infrastructure investments,but also ensure the service level of the existing transportation system.展开更多
With the wide application of condition based maintenance(CBM) in aircraft maintenance practice, the joint optimization of maintenance and inventory management, which can take full advantage of CBM and reduce the aircr...With the wide application of condition based maintenance(CBM) in aircraft maintenance practice, the joint optimization of maintenance and inventory management, which can take full advantage of CBM and reduce the aircraft operational cost, is receiving increasing attention. In order to optimize the inspection interval, maintenance decision and spare provisioning together for aircraft deteriorating parts, firstly, a joint inventory management strategy is presented, then, a joint optimization of maintenance inspection and spare provisioning for aircraft parts subject to the Wiener degradation process is proposed based on the strategy.Secondly, a combination of the genetic algorithm(GA) and the Monte Carol method is developed to minimize the total cost rate.Finally, a case study is conducted and the proposed joint optimization model is compared with the existing optimization model and the airline real case. The results demonstrate that the proposed model is more beneficial and effective. In addition, the sensitivity analysis of the proposed model shows that the lead time has higher influence on the optimal results than the urgent order cost and the corrective maintenance cost, which is consistent with the actual situation of aircraft maintenance practices and inventory management.展开更多
A particle swarm optimization (PSO) algorithm improved by immunity algorithm (IA) was presented. Memory and self-regulation mechanisms of IA were used to avoid PSO plunging into local optima. Vaccination and immune se...A particle swarm optimization (PSO) algorithm improved by immunity algorithm (IA) was presented. Memory and self-regulation mechanisms of IA were used to avoid PSO plunging into local optima. Vaccination and immune selection mechanisms were used to prevent the undulate phenomenon during the evolutionary process. The algorithm was introduced through an application in the direct maintenance cost (DMC) estimation of aircraft components. Experiments results show that the algorithm can compute simply and run quickly. It resolves the combinatorial optimization problem of component DMC estimation with simple and available parameters. And it has higher accuracy than individual methods, such as PLS, BP and v-SVM, and also has better performance than other combined methods, such as basic PSO and BP neural network.展开更多
In view of the high complexity of the objective world, an economic dependence between subsystems(paired and unpaired) is proposed, and then the maintenance cost and time under different economic dependences are formul...In view of the high complexity of the objective world, an economic dependence between subsystems(paired and unpaired) is proposed, and then the maintenance cost and time under different economic dependences are formulated in a simple and consistent manner. Selective maintenance problem under economic dependence(EDSMP) is presented based on a series–parallel system in this paper. A case study shows that the system reliability is promoted to a certain extent, which can validate the validity of the EDSMP model. The influence of the ratio of set-up cost on system performance is mainly discussed under different economic dependences. Several existing improvements of classical exhaust algorithm are further modified to solve a large sized EDSMP rapidly. Experimental results illustrate that these improvements can reduce CPU time significantly.Furthermore the contribution of each improvement is defined here, and then their contributions are compared thoroughly.展开更多
Aiming at wind turbines,the opportunistic maintenance optimization is carried out for multi-component system,where minimal repair,imperfect repair,replacement as well as their effects on component’s effective age are...Aiming at wind turbines,the opportunistic maintenance optimization is carried out for multi-component system,where minimal repair,imperfect repair,replacement as well as their effects on component’s effective age are considered.At each inspection point,appropriate maintenance mode is selected according to the component’s effective age and its maintenance threshold.To utilize the maintenance opportunities for the components among the wind turbines,opportunistic maintenance approach is adopted.Meanwhile,the influence of seasonal factor on the component’s failure rate and improvement factor’s decrease with the increase of repair’s times are also taken into account.The maintenance threshold is set as the decision variable,and an opportunistic maintenance optimization model is proposed to minimize wind turbine’s life-cycle maintenance cost.Moreover,genetic algorithm is adopted to solve the model,and the effectiveness is verified with a case study.The results show that based on the component’s inherent reliability and maintainability,the proposed model can provide optimal maintenance plans accordingly.Furthermore,the higher the component’s reliability and maintainability are,the less the times of repair and replacement will be.展开更多
With the development of technology, the performance of vessel equipment is improved, the structure is more complicated, the automation level is enhanced, the source needed by maintenance is increased and the outlay is...With the development of technology, the performance of vessel equipment is improved, the structure is more complicated, the automation level is enhanced, the source needed by maintenance is increased and the outlay is rising day by day. For these questions, this paper analyzes the factors that affect the outlay of equipment maintenance, and describes the computational principle of the BP (back propagation) artificial neural network and its applications in the maintenance of naval ship and craft. Finally, a dynamic investment prediction model of outlay for the military equipment maintenance is designed. It is important for decreasing the entire life period outlay and drawing up the maintenance plan and programming to analyze the position and action of maintenance outlay in entire life period outlay.展开更多
An opportunistic maintenance model is presented for a continuously deteriorating series system with economical de-pendence. The system consists of two kinds of units, which are respectively subjected to the deteriorat...An opportunistic maintenance model is presented for a continuously deteriorating series system with economical de-pendence. The system consists of two kinds of units, which are respectively subjected to the deterioration failure described by Gamma process and the random failure described by Poisson process. A two-level opportunistic policy defined by three decision parameters is proposed to coordinate the different maintenance actions and minimize the long-run maintenance cost rate of the system. A computable expression of the average cost rate is established by using the renewal property of the stochastic process of the maintained system state. The optimal values of three deci- sion parameters are derived by an iteration approach based on the characteristic of Gamma process. The behavior of the proposed policy is illustrated through a numerical experiment. Comparative study with the widely used corrective maintenance policy demonstrates the advantage of the proposed opportunistic maintenance method in significantly reducing the maintenance cost. Simultane- ously, the applicable area of this opportunistic model is discussed by the sensitivity analysis of the set-up cost and random failure rate.展开更多
It is significant to combine multiple tasks into an optimal work package in decision-making of aircraft maintenance to reduce cost,so a cost rate model of combinatorial maintenance is an urgent need.However,the optima...It is significant to combine multiple tasks into an optimal work package in decision-making of aircraft maintenance to reduce cost,so a cost rate model of combinatorial maintenance is an urgent need.However,the optimal combination under various constraints not only involves numerical calculations but also is an NP-hard combinatorial problem.To solve the problem,an adaptive genetic algorithm based on cluster search,which is divided into two phases,is put forward.In the first phase,according to the density,all individuals can be homogeneously scattered over the whole solution space through crossover and mutation and better individuals are collected as candidate cluster centres.In the second phase,the search is confined to the neighbourhood of some selected possible solutions to accurately solve with cluster radius decreasing slowly,meanwhile all clusters continuously move to better regions until all the peaks in the question space is searched.This algorithm can efficiently solve the combination problem.Taking the optimization on decision-making of aircraft maintenance by the algorithm for an example,maintenance which combines multiple parts or tasks can significantly enhance economic benefit when the halt cost is rather high.展开更多
A cost-based selective maintenance decision-making method was presented.The purpose of this method was to find an optimal choice of maintenance actions to be performed on a selected group of machines for manufacturing...A cost-based selective maintenance decision-making method was presented.The purpose of this method was to find an optimal choice of maintenance actions to be performed on a selected group of machines for manufacturing systems.The arithmetic reduction of intensity model was introduced to describe the influence on machine failure intensity by different maintenance actions (preventive maintenance,minimal repair and overhaul).In the meantime,a resolution algorithm combining the greedy heuristic rules with genetic algorithm was provided.Finally,a case study of the maintenance decision-making problem of automobile workshop was given.Furthermore,the case study demonstrates the practicability of this method.展开更多
This paper presents a joint optimization policy of preventive maintenance(PM)and spare ordering for single-unit systems,which deteriorate subject to the delay-time concept with three deterioration stages.PM activities...This paper presents a joint optimization policy of preventive maintenance(PM)and spare ordering for single-unit systems,which deteriorate subject to the delay-time concept with three deterioration stages.PM activities that combine a non-periodic inspection scheme with age-replacement are implemented.When the system is detected to be in the minor defective stage by an inspection for the first time,place an order and shorten the inspection interval.If the system has deteriorated to a severe defective stage,it is either repaired imperfectly or replaced by a new spare.However,an immediate replacement is required once the system fails,the maximal number of imperfect maintenance(IPM)is satisfied or its age reaches to a pre-specified threshold.In consideration of the spare’s availability as needed,there are three types of decisions,i.e.,an immediate or a delayed replacement by a regular ordered spare,an immediate replacement by an expedited ordered spare with a relative higher cost.Then,some mutually independent and exclusive renewal events at the end of a renewal cycle are discussed,and the optimization model of such a joint policy is further developed by minimizing the long-run expected cost rate to find the optimal inspection and age-replacement intervals,and the maximum number of IPM.A Monte-Carlo based integration method is also designed to solve the proposed model.Finally,a numerical example is given to illustrate the proposed joint optimization policy and the performance of the Monte-Carlo based integration method.展开更多
基金supported by the National watural Science Foundation of China (60904002)
文摘A condition-based maintenance model for gamma deteriorating system under continuous inspection is studied. This methodology uses a gamma distribution to model the material degradation, and the impact of imperfect maintenance actions on the system reliability is investigated. The state of a degrading system immediately after the imperfect maintenance action is assumed as a random variable and the maintenance time follows a geometric process. Furthermore, the explicit expressions for the long-run average cost and availability per unit time of the system are evaluated, an optimal policy (ε^*) could be determined numeri- cally or analytically according to the optimization model. At last, a numerical example for a degrading system modeled by a gamma process is presented to demonstrate the use of this policy in practical applications.
基金supported by the National Natural Science Foundation of China(61873122)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Condition-based maintenance(CBM) is receiving increasing attention in various engineering systems because of its effectiveness. This paper formulates a new CBM optimization problem for continuously monitored degrading systems considering imperfect maintenance actions. In terms of maintenance actions,in practice, they scarcely restore the system to an as-good-as new state due to residual damage. According to up-to-data researches, imperfect maintenance actions are likely to speed up the degradation process. Regarding the developed CBM optimization strategy, it can balance the maintenance cost and the availability by the searching the optimal preventive maintenance threshold.The maximum number of maintenance is also considered, which is regarded as an availability constraint in the CBM optimization problem. A numerical example is introduced, and experimental results can demonstrate the novelty, feasibility and flexibility of the proposed CBM optimization strategy.
基金supported by the National Natural Science Foundation of China(51705221)the China Scholarship Council(201606830028)+1 种基金the Fundamental Research Funds for the Central Universities(NS2015072)the Funding of Jiangsu Innovation Program for Graduate Education(KYLX15 0313)
文摘Most of the maintenance optimization models in condition-based maintenance(CBM) consider the cost-optimal criterion, but few papers have dealt with availability maximization for maintenance applications. A novel optimal Bayesian control approach is presented for maintenance decision making. The system deterioration evolves as a three-state continuous time hidden semi-Markov process. Considering the optimal maintenance policy, the multivariate Bayesian control scheme based on the hidden semi-Markov model(HSMM) is developed, the objective is to maximize the long-run expected average availability per unit time. The proposed approach can optimize the sampling interval and control limit jointly. A case study using Markov chain Monte Carlo(MCMC)simulation is provided and a comparison with the Bayesian control scheme based on hidden Markov model(HMM), the age-based replacement policy, Hotelling’s T2, multivariate exponentially weihted moving average(MEWMA) and multivariate cumulative sum(MCUSUM) control charts is given, which illustrates the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (71901216)。
文摘An effective maintenance policy optimization model can reduce maintenance cost and system operation risk. For mission-oriented systems, the degradation process changes dynamically and is monotonous and irreversible. Meanwhile, the risk of early failure is high. Therefore, this paper proposes a dynamic condition-based maintenance(CBM) optimization model for mission-oriented system based on inverse Gaussian(IG) degradation process. Firstly, the IG process with random drift coefficient is used to describe the degradation process and the relevant probability distributions are obtained. Secondly, the dynamic preventive maintenance threshold(DPMT) function is used to control the early failure risk of the mission-oriented system, and the influence of imperfect preventive maintenance(PM)on the degradation amount and degradation rate is analysed comprehensively. Thirdly, according to the mission availability requirement, the probability formulas of different types of renewal policies are obtained, and the CBM optimization model is constructed. Finally, a numerical example is presented to verify the proposed model. The comparison with the fixed PM threshold model and the sensitivity analysis show the effectiveness and application value of the optimization model.
基金supported by the National Natural Science Foundation of China(Grant No.62203362)the Natural Science Basic Research Program of Shaanxi(Grant No.2023-JC-QN-0569)。
文摘A situation maintenance-based cooperative guidance strategy is proposed to intercept a high-speed and high-maneuverability target via inferior missiles.Reachability and relative motion analyses are conducted to develop and pursue virtual targets,respectively.A two-stage guidance strategy under nonlinear kinematics is developed on the basis of virtual targets.The first stage optimizes the coverage and collision situation by pursuing virtual targets under specific angular constraints.The second stage subsequently intercepts the superior target based on the handover condition optimized by the first stage.Numerical simulation results are provided to compare the effectiveness and superiority of the proposed strategy with those of the reachability-based cooperative strategy(RCS),coverage-based cooperative guidance(CBCG)and augmented proportional navigation(APN)under various maneuvering modes.
文摘This paper investigates the selective maintenance o systems that perform multi-mission in succession. Selective maintenance is performed on systems with limited break time to improve the success of the next mission. In general, the duration of the mission is stochastic. However, existing studies rarely take into account system availability and the repairpersons with different skill levels. To solve this problem, a new multi-mission selective maintenance and repairpersons assignment model with stochastic duration of the mission are developed. To maximize the minimum phase-mission reliability while meeting the minimum system availability, the model is transformed into an optimization problem subject to limited maintenance resources. The optimization is then realized using an analytical method based on a self-programming function and a Monte Carlo simulation method, respectively. Finally, the validity of the model and solution method approaches are verified by numerical arithmetic examples. Comparative and sensitivity analyses are made to provide proven recommendations for decision-makers.
基金supported by the Postdoctoral Science Foundation of China(20080431380)
文摘Although opportunistic maintenance strategies are widely used for multi-component systems, all opportunistic mainte- nance strategies only consider economic dependence and do not take structural dependence into account. An opportunistic main- tenance strategy is presented for a multi-component system that considers both structural dependence and economic dependence. The cost relation and time relation among components based on structural dependence are developed. The maintenance strategy for each component of a multi-component system involves one of five maintenance actions, namely, no-maintenance, a minimal maintenance action, an imperfect maintenance action, a perfect maintenance action, and a replacement action. The maintenance action is determined by the virtual age of the component, the life expectancy of the component, and the age threshold values. Monte Carlo simulation is designed to obtain the optimal oppor- tunistic maintenance strategy of the system over its lifetime. The simulation result reveals that the minimum maintenance cost with a strategy that considers structural dependence is less than that with a strategy that does not consider structural dependence. The availability with a strategy that considers structural dependence is greater than that with a strategy that does not consider structural dependence under the same conditions.
基金supported by the National Natural Science Foundation of China (60904002)
文摘An optimal replacement model for gamma deteriorating systems is studied. This methodology uses a gamma distribution to model the material degradation, and the impact of imperfect maintenance actions on the system reliability is investigated. The state of a degrading system immediately after the imperfect maintenance action is assumed as a random variable and the maintenance time follows a geometric process. A maintenance policy (N) is applied by which the system will be repaired whenever it experiences Nth preventive maintenance (PM), and an optimal policy (N*) could be determined numerically or analytically for minimizing the long-run average cost per unit time. Finally, a numerical example is presented to demonstrate the use of this policy.
基金supported by the National Natural Science Foundation of China (60904002 70971132)
文摘A collaborative optimization model for maintenance and spare ordering of a single-unit degrading system is proposed in this paper based on the continuous detection. A gamma distribution is used to model the material degradation. The degrading decrement after the imperfect maintenance action is assumed as a random variable normal distribution. This model aims to ob- tain the optimal maintenance policy and spare ordering point with the expected cost rate within system lifecycle as the optimization objective. The rationality and feasibility of the model are proved through a numerical example.
基金Project(71101155)supported by the National Natural Science Foundation of ChinaProject(2015JJ2184)supported by the Natural Science Foundation of Hunan Province,China
文摘To maintain their capacity,transportation infrastructures are in need of regular maintenance and rehabilitation.The major challenge facing transportation engineers is the network-level policies to maintain the deteriorating roads at an acceptable level of serviceability.In this work,a quantitative transportation network efficiency measure is presented and then how to determine optimally network-level road maintenance policy depending on the road importance to the network performance has been demonstrated.The examples show that the different roads should be set different maintenance time points in terms of the retention capacities of the roads,because the different roads play different roles in network and have different important degrees to the network performance.This network-level road maintenance optimization method could not only save lots of infrastructure investments,but also ensure the service level of the existing transportation system.
基金supported by the Fundamental Research Funds for the Central Universities(NS2015072)
文摘With the wide application of condition based maintenance(CBM) in aircraft maintenance practice, the joint optimization of maintenance and inventory management, which can take full advantage of CBM and reduce the aircraft operational cost, is receiving increasing attention. In order to optimize the inspection interval, maintenance decision and spare provisioning together for aircraft deteriorating parts, firstly, a joint inventory management strategy is presented, then, a joint optimization of maintenance inspection and spare provisioning for aircraft parts subject to the Wiener degradation process is proposed based on the strategy.Secondly, a combination of the genetic algorithm(GA) and the Monte Carol method is developed to minimize the total cost rate.Finally, a case study is conducted and the proposed joint optimization model is compared with the existing optimization model and the airline real case. The results demonstrate that the proposed model is more beneficial and effective. In addition, the sensitivity analysis of the proposed model shows that the lead time has higher influence on the optimal results than the urgent order cost and the corrective maintenance cost, which is consistent with the actual situation of aircraft maintenance practices and inventory management.
文摘A particle swarm optimization (PSO) algorithm improved by immunity algorithm (IA) was presented. Memory and self-regulation mechanisms of IA were used to avoid PSO plunging into local optima. Vaccination and immune selection mechanisms were used to prevent the undulate phenomenon during the evolutionary process. The algorithm was introduced through an application in the direct maintenance cost (DMC) estimation of aircraft components. Experiments results show that the algorithm can compute simply and run quickly. It resolves the combinatorial optimization problem of component DMC estimation with simple and available parameters. And it has higher accuracy than individual methods, such as PLS, BP and v-SVM, and also has better performance than other combined methods, such as basic PSO and BP neural network.
基金supported by the National Science Foundation of China (Grant No. 61305083)
文摘In view of the high complexity of the objective world, an economic dependence between subsystems(paired and unpaired) is proposed, and then the maintenance cost and time under different economic dependences are formulated in a simple and consistent manner. Selective maintenance problem under economic dependence(EDSMP) is presented based on a series–parallel system in this paper. A case study shows that the system reliability is promoted to a certain extent, which can validate the validity of the EDSMP model. The influence of the ratio of set-up cost on system performance is mainly discussed under different economic dependences. Several existing improvements of classical exhaust algorithm are further modified to solve a large sized EDSMP rapidly. Experimental results illustrate that these improvements can reduce CPU time significantly.Furthermore the contribution of each improvement is defined here, and then their contributions are compared thoroughly.
基金Project(71671035)supported by the National Natural Science Foundation of ChinaProjects(ZK15-03-01,ZK16-03-07)supported by Open Fund of Jiangsu Wind Power Engineering Technology Center of China
文摘Aiming at wind turbines,the opportunistic maintenance optimization is carried out for multi-component system,where minimal repair,imperfect repair,replacement as well as their effects on component’s effective age are considered.At each inspection point,appropriate maintenance mode is selected according to the component’s effective age and its maintenance threshold.To utilize the maintenance opportunities for the components among the wind turbines,opportunistic maintenance approach is adopted.Meanwhile,the influence of seasonal factor on the component’s failure rate and improvement factor’s decrease with the increase of repair’s times are also taken into account.The maintenance threshold is set as the decision variable,and an opportunistic maintenance optimization model is proposed to minimize wind turbine’s life-cycle maintenance cost.Moreover,genetic algorithm is adopted to solve the model,and the effectiveness is verified with a case study.The results show that based on the component’s inherent reliability and maintainability,the proposed model can provide optimal maintenance plans accordingly.Furthermore,the higher the component’s reliability and maintainability are,the less the times of repair and replacement will be.
文摘With the development of technology, the performance of vessel equipment is improved, the structure is more complicated, the automation level is enhanced, the source needed by maintenance is increased and the outlay is rising day by day. For these questions, this paper analyzes the factors that affect the outlay of equipment maintenance, and describes the computational principle of the BP (back propagation) artificial neural network and its applications in the maintenance of naval ship and craft. Finally, a dynamic investment prediction model of outlay for the military equipment maintenance is designed. It is important for decreasing the entire life period outlay and drawing up the maintenance plan and programming to analyze the position and action of maintenance outlay in entire life period outlay.
基金supported by the National Natural Science Foundation of China(6090400271201166)
文摘An opportunistic maintenance model is presented for a continuously deteriorating series system with economical de-pendence. The system consists of two kinds of units, which are respectively subjected to the deterioration failure described by Gamma process and the random failure described by Poisson process. A two-level opportunistic policy defined by three decision parameters is proposed to coordinate the different maintenance actions and minimize the long-run maintenance cost rate of the system. A computable expression of the average cost rate is established by using the renewal property of the stochastic process of the maintained system state. The optimal values of three deci- sion parameters are derived by an iteration approach based on the characteristic of Gamma process. The behavior of the proposed policy is illustrated through a numerical experiment. Comparative study with the widely used corrective maintenance policy demonstrates the advantage of the proposed opportunistic maintenance method in significantly reducing the maintenance cost. Simultane- ously, the applicable area of this opportunistic model is discussed by the sensitivity analysis of the set-up cost and random failure rate.
基金supported by the National Natural Science Foundation of China(6107901361079014+4 种基金61403198)the National Natural Science Funds and Civil Aviaiton Mutual Funds(U1533128U1233114)the Programs of Natural Science Foundation of China and China Civil Aviation Joint Fund(60939003)the Natural Science Foundation of Jiangsu Province in China(BK2011737)
文摘It is significant to combine multiple tasks into an optimal work package in decision-making of aircraft maintenance to reduce cost,so a cost rate model of combinatorial maintenance is an urgent need.However,the optimal combination under various constraints not only involves numerical calculations but also is an NP-hard combinatorial problem.To solve the problem,an adaptive genetic algorithm based on cluster search,which is divided into two phases,is put forward.In the first phase,according to the density,all individuals can be homogeneously scattered over the whole solution space through crossover and mutation and better individuals are collected as candidate cluster centres.In the second phase,the search is confined to the neighbourhood of some selected possible solutions to accurately solve with cluster radius decreasing slowly,meanwhile all clusters continuously move to better regions until all the peaks in the question space is searched.This algorithm can efficiently solve the combination problem.Taking the optimization on decision-making of aircraft maintenance by the algorithm for an example,maintenance which combines multiple parts or tasks can significantly enhance economic benefit when the halt cost is rather high.
基金Project(51105141,51275191)supported by the National Natural Science Foundation of ChinaProject(2009AA043301)supported by the National High Technology Research and Development Program of ChinaProject(2012TS073)supported by the Fundamental Research Funds for the Central University of HUST,China
文摘A cost-based selective maintenance decision-making method was presented.The purpose of this method was to find an optimal choice of maintenance actions to be performed on a selected group of machines for manufacturing systems.The arithmetic reduction of intensity model was introduced to describe the influence on machine failure intensity by different maintenance actions (preventive maintenance,minimal repair and overhaul).In the meantime,a resolution algorithm combining the greedy heuristic rules with genetic algorithm was provided.Finally,a case study of the maintenance decision-making problem of automobile workshop was given.Furthermore,the case study demonstrates the practicability of this method.
基金supported by the Naitonal Natural Science Foundation of China(71701038)China Ministry of Education Humanities and Social Sciences Research Youth Fund Project(16YJC630174)+2 种基金the Natural Science Foundation of Hebei Province(G2019501074)the Fundamental Research Funds for the Central Universities(N2123019)the Postgraduate Funding Project of PLA(JY2020B085).
文摘This paper presents a joint optimization policy of preventive maintenance(PM)and spare ordering for single-unit systems,which deteriorate subject to the delay-time concept with three deterioration stages.PM activities that combine a non-periodic inspection scheme with age-replacement are implemented.When the system is detected to be in the minor defective stage by an inspection for the first time,place an order and shorten the inspection interval.If the system has deteriorated to a severe defective stage,it is either repaired imperfectly or replaced by a new spare.However,an immediate replacement is required once the system fails,the maximal number of imperfect maintenance(IPM)is satisfied or its age reaches to a pre-specified threshold.In consideration of the spare’s availability as needed,there are three types of decisions,i.e.,an immediate or a delayed replacement by a regular ordered spare,an immediate replacement by an expedited ordered spare with a relative higher cost.Then,some mutually independent and exclusive renewal events at the end of a renewal cycle are discussed,and the optimization model of such a joint policy is further developed by minimizing the long-run expected cost rate to find the optimal inspection and age-replacement intervals,and the maximum number of IPM.A Monte-Carlo based integration method is also designed to solve the proposed model.Finally,a numerical example is given to illustrate the proposed joint optimization policy and the performance of the Monte-Carlo based integration method.