Risk management often plays an important role in decision making un-der uncertainty.In quantitative risk management,assessing and optimizing risk metrics requires eficient computing techniques and reliable theoretical...Risk management often plays an important role in decision making un-der uncertainty.In quantitative risk management,assessing and optimizing risk metrics requires eficient computing techniques and reliable theoretical guarantees.In this pa-per,we introduce several topics on quantitative risk management and review some of the recent studies and advancements on the topics.We consider several risk metrics and study decision models that involve the metrics,with a main focus on the related com-puting techniques and theoretical properties.We show that stochastic optimization,as a powerful tool,can be leveraged to effectively address these problems.展开更多
As a non-contact ultra-precision machining method,abrasive water jet polishing(AWJP)has signi-ficant application in optical elements processing due to its stable tool influence function(TIF),no subsurface damage and s...As a non-contact ultra-precision machining method,abrasive water jet polishing(AWJP)has signi-ficant application in optical elements processing due to its stable tool influence function(TIF),no subsurface damage and strong adaptability to workpiece shapes.In this study,the effects of jet pressure,nozzle diameter and impinging angle on the distribution of pressure,velocity and wall shear stress in the polishing flow field were systematically analyzed by computational fluid dynamics(CFD)simulation.Based on the Box-Behnken experimental design,a response surface regression model was constructed to investigate the influence mech-anism of process parameters on material removal rate(MRR)and surface roughness(Ra)of fused silica.And experimental results showed that increasing jet pressure and nozzle diameter significantly improved MRR,consistent with shear stress distribution revealed by CFD simulations.However,increasing jet pressure and impinging angle caused higher Ra values,which was unfavorable for surface quality improvement.Genetic algorithm(GA)was used for multi-objective optimization to establish Pareto solutions,achieving concurrent optimization of polishing efficiency and surface quality.A parameter combination of 2 MPa jet pressure,0.3 mm nozzle diameter,and 30°impinging angle achieved MRR of 169.05μm^(3)/s and Ra of 0.50 nm.Exper-imental verification showed prediction errors of 4.4%(MRR)and 3.8%(Ra),confirming the model’s reliabil-ity.This parameter optimization system provides theoretical basis and technical support for ultra-precision polishing of complex curved optical components.展开更多
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base...In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.展开更多
In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introduc...In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introducing only one additional evaluation of the function in each step.Furthermore,some new efficient methods with a higher-order of convergence are obtained by using only a single matrix inversion in each iteration.Analyses of convergence properties and computational efficiency of these new methods are made and testified by several numerical problems.By comparison,the new schemes are more efficient than the corresponding existing ones,particularly for large problem sizes.展开更多
Fourier Ptychographic Microscopy(FPM)is a high-throughput computational optical imaging technology reported in 2013.It effectively breaks through the trade-off between high-resolution imaging and wide-field imaging.In...Fourier Ptychographic Microscopy(FPM)is a high-throughput computational optical imaging technology reported in 2013.It effectively breaks through the trade-off between high-resolution imaging and wide-field imaging.In recent years,it has been found that FPM is not only a tool to break through the trade-off between field of view and spatial resolution,but also a paradigm to break through those trade-off problems,thus attracting extensive attention.Compared with previous reviews,this review does not introduce its concept,basic principles,optical system and series of applications once again,but focuses on elaborating the three major difficulties faced by FPM technology in the process from“looking good”in the laboratory to“working well”in practical applications:mismatch between numerical model and physical reality,long reconstruction time and high computing power demand,and lack of multi-modal expansion.It introduces how to achieve key technological innovations in FPM through the dual drive of Artificial Intelligence(AI)and physics,including intelligent reconstruction algorithms introducing machine learning concepts,optical-algorithm co-design,fusion of frequency domain extrapolation methods and generative adversarial networks,multi-modal imaging schemes and data fusion enhancement,etc.,gradually solving the difficulties of FPM technology.Conversely,this review deeply considers the unique value of FPM technology in potentially feeding back to the development of“AI+optics”,such as providing AI benchmark tests under physical constraints,inspirations for the balance of computing power and bandwidth in miniaturized intelligent microscopes,and photoelectric hybrid architectures.Finally,it introduces the industrialization path and frontier directions of FPM technology,pointing out that with the promotion of the dual drive of AI and physics,it will generate a large number of industrial application case,and looks forward to the possibilities of future application scenarios and expansions,for instance,body fluid biopsy and point-of-care testing at the grassroots level represent the expansion of the growth market.展开更多
Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure ...Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure challenges in edge environments.However,the diversity of clients in edge cloud computing presents significant challenges for FL.Personalized federated learning(pFL)received considerable attention in recent years.One example of pFL involves exploiting the global and local information in the local model.Current pFL algorithms experience limitations such as slow convergence speed,catastrophic forgetting,and poor performance in complex tasks,which still have significant shortcomings compared to the centralized learning.To achieve high pFL performance,we propose FedCLCC:Federated Contrastive Learning and Conditional Computing.The core of FedCLCC is the use of contrastive learning and conditional computing.Contrastive learning determines the feature representation similarity to adjust the local model.Conditional computing separates the global and local information and feeds it to their corresponding heads for global and local handling.Our comprehensive experiments demonstrate that FedCLCC outperforms other state-of-the-art FL algorithms.展开更多
Trans-medium flight vehicles can combine high aerial maneuverability and underwater concealment ability,which have attracted much attention recently.As the most crucial procedure,the trajectory design generally determ...Trans-medium flight vehicles can combine high aerial maneuverability and underwater concealment ability,which have attracted much attention recently.As the most crucial procedure,the trajectory design generally determines the trans-medium flight vehicle performance.To quantitatively analyze the flight vehicle performance,an entire aerial-aquatic trajectory model is developed in this paper.Different from modeling a trajectory purely for the water entry process,the constructed entire trajectory model has integrated aerial,water entry,and underwater trajectories together,which can consider the influence of the connected trajectories.As for the aerial and underwater trajectories,explicit dynamic models are established to obtain the trajectory parameters.Due to the complicated fluid force during high-velocity water entry,a computational fluid dynamics model is investigated to analyze this phase.The compu-tational domain size is adaptively refined according to the final aerial trajectory state,where the redundant computational domain is removed.An entire trajectory optimization problem is then formulated to maximize the total flight range via tuning the joint states of different trajectories.Simultaneously,several constraints,i.e.,the max impact load,trajectory height,etc.,are involved in the optimization problem.Rather than directly optimizing by a heuristic algorithm,a multi-surrogate cooperative sampling-based optimization method is proposed to alleviate the computational complexity of the entire trajectory optimization problem.In this method,various surrogates coopera-tively generate infill sample points,thereby preventing the poor approximation.After optimization,the total flight range can be improved by 20%,while all the constraints are satisfied.The result demonstrates the effectiveness and practicability of the developed model and optimization framework.展开更多
Installing the splitter plates is a passive aerodynamic solution for eliminating vortex-induced vibration (VIV). However, the influences of splitter plates on the VIV and aerostatic performances are more complicated d...Installing the splitter plates is a passive aerodynamic solution for eliminating vortex-induced vibration (VIV). However, the influences of splitter plates on the VIV and aerostatic performances are more complicated due to aerodynamic interference between highway and railway decks. To study the effects of splitter plates, wind tunnel experiments for measuring VIV and aerostatic forces of twin decks under two opposite flow directions were conducted, while the surrounding flow and wind pressure of static twin decks with and without splitter plates are numerically simulated. The results showed that the incoming flow direction affects the VIV response and aerostatic coefficients. The highway deck has poor vertical and torsional VIV, and the VIV region and amplitude are different under different directions. While the railway deck only has vertical VIV when located upstream. The splitter plates can impede the process of vortex generation, shedding and impinging at the gap between twin deck, and significantly reducing the surface fluctuating pressure coefficient, thus effectively suppressing the VIV of twin decks. While, the splitter plates hurt the upstream deck regarding static wind stability and have little effect on the downstream deck. The splitter plates of appropriate width are recommended to improve VIV performances in twin parallel bridges.展开更多
Fog computing has emerged as an important technology which can improve the performance of computation-intensive and latency-critical communication networks.Nevertheless,the fog computing Internet-of-Things(IoT)systems...Fog computing has emerged as an important technology which can improve the performance of computation-intensive and latency-critical communication networks.Nevertheless,the fog computing Internet-of-Things(IoT)systems are susceptible to malicious eavesdropping attacks during the information transmission,and this issue has not been adequately addressed.In this paper,we propose a physical-layer secure fog computing IoT system model,which is able to improve the physical layer security of fog computing IoT networks against the malicious eavesdropping of multiple eavesdroppers.The secrecy rate of the proposed model is analyzed,and the quantum galaxy–based search algorithm(QGSA)is proposed to solve the hybrid task scheduling and resource management problem of the network.The computational complexity and convergence of the proposed algorithm are analyzed.Simulation results validate the efficiency of the proposed model and reveal the influence of various environmental parameters on fog computing IoT networks.Moreover,the simulation results demonstrate that the proposed hybrid task scheduling and resource management scheme can effectively enhance secrecy performance across different communication scenarios.展开更多
Objective To observe the value of self-supervised deep learning artificial intelligence(AI)noise reduction technology based on the nearest adjacent layer applicated in ultra-low dose CT(ULDCT)for urinary calculi.Metho...Objective To observe the value of self-supervised deep learning artificial intelligence(AI)noise reduction technology based on the nearest adjacent layer applicated in ultra-low dose CT(ULDCT)for urinary calculi.Methods Eighty-eight urinary calculi patients were prospectively enrolled.Low dose CT(LDCT)and ULDCT scanning were performed,and the effective dose(ED)of each scanning protocol were calculated.The patients were then randomly divided into training set(n=75)and test set(n=13),and a self-supervised deep learning AI noise reduction system based on the nearest adjacent layer constructed with ULDCT images in training set was used for reducing noise of ULDCT images in test set.In test set,the quality of ULDCT images before and after AI noise reduction were compared with LDCT images,i.e.Blind/Referenceless Image Spatial Quality Evaluator(BRISQUE)scores,image noise(SD ROI)and signal-to-noise ratio(SNR).Results The tube current,the volume CT dose index and the dose length product of abdominal ULDCT scanning protocol were all lower compared with those of LDCT scanning protocol(all P<0.05),with a decrease of ED for approximately 82.66%.For 13 patients with urinary calculi in test set,BRISQUE score showed that the quality level of ULDCT images before AI noise reduction reached 54.42%level but raised to 95.76%level of LDCT images after AI noise reduction.Both ULDCT images after AI noise reduction and LDCT images had lower SD ROI and higher SNR than ULDCT images before AI noise reduction(all adjusted P<0.05),whereas no significant difference was found between the former two(both adjusted P>0.05).Conclusion Self-supervised learning AI noise reduction technology based on the nearest adjacent layer could effectively reduce noise and improve image quality of urinary calculi ULDCT images,being conducive for clinical application of ULDCT.展开更多
Dual-layer spectral detector CT is a new spectrum CT imaging technology based on detector being able to obtain both images similar to true plain and spectral images in one time scanning.The reconstructed multi-paramet...Dual-layer spectral detector CT is a new spectrum CT imaging technology based on detector being able to obtain both images similar to true plain and spectral images in one time scanning.The reconstructed multi-parameter spectral images can not only improve image quality,enhance tissue contrast,increase the visualization and detection ability of occult lesions,but also provide qualitative and quantitative analysis of the lesions,so as to provide more imaging information and multi-dimensional diagnostic basis.The research progresses of dual-layer spectral detector CT for preoperative evaluation on colorectal cancer were reviewed in this article.展开更多
Objective To observe the value of preoperative CT radiomics models for predicting composition of in vivo urinary calculi.Methods Totally 543 urolithiasis patients were retrospectively enrolled and divided into calcium...Objective To observe the value of preoperative CT radiomics models for predicting composition of in vivo urinary calculi.Methods Totally 543 urolithiasis patients were retrospectively enrolled and divided into calcium oxalate monohydrate stone group(group A,n=373),anhydrous uric acid stone group(group B,n=86),carbonate apatite group(group C,n=30),ammonium urate stone group(group D,n=28)and ammonium magnesium phosphate hexahydrate stone group(group E,n=26)according to the composition of calculi,also divided into training set and test set at the ratio of 7∶3.Radiomics features were extracted and screened based on plain CT images of urinary system.Five binary task models(model A—E corresponding to group A—E)and a quinary task model were constructed using least absolute shrinkage and selection operator algorithm for predicting the composition of calculi in vivo.Then receiver operating characteristic curves were drawn,and the area under the curves(AUC)were calculated to evaluate the predictive efficacy of binary task models,while the accuracy,precision,recall and F1 score were used to evaluate the predictive efficacy of the quinary task model.Results All binary task models had good efficacy for predicting the composition of urinary calculi in vivo,with AUC of 0.860—0.948 in training set and of 0.856—0.933 in test set.The accuracy,precision,recall and F1 score of the quinary task model for predicting the composition of in vivo urinary calculi was 82.25%,83.79%,46.23%and 0.596 in training set,respectively,while was 80.63%,75.26%,43.48%and 0.551 in test set,respectively.Conclusion Binary task radiomics models based on preoperative plain CT had good efficacy for predicting the composition of in vivo urinary calculi,while the quinary task radiomics model had high accuracy but relatively poor stability.展开更多
Objective To establish a body composition analysis system based on chest CT,and to observe its value for evaluating content of chest muscle and adipose.Methods T7—T8 layer CT images of 108 pneumonia patients were col...Objective To establish a body composition analysis system based on chest CT,and to observe its value for evaluating content of chest muscle and adipose.Methods T7—T8 layer CT images of 108 pneumonia patients were collected(segmented dataset),and chest CT data of 984 patients were screened from the COVID 19-CT dataset(10 cases were randomly selected as whole test dataset,the remaining 974 cases were selected as layer selection dataset).T7—T8 layer was classified based on convolutional neural network(CNN)derived networks,including ResNet,ResNeXt,MobileNet,ShuffleNet,DenseNet,EfficientNet and ConvNeXt,then the accuracy,precision,recall and specificity were used to evaluate the performance of layer selection dataset.The skeletal muscle(SM),subcutaneous adipose tissue(SAT),intermuscular adipose tissue(IMAT)and visceral adipose tissue(VAT)were segmented using classical fully CNN(FCN)derived network,including FCN,SegNet,UNet,Attention UNet,UNET++,nnUNet,UNeXt and CMUNeXt,then Dice similarity coefficient(DSC),intersection over union(IoU)and 95 Hausdorff distance(HD)were used to evaluate the performance of segmented dataset.The automatic body composition analysis system was constructed based on optimal layer selection network and segmentation network,the mean absolute error(MAE),root mean squared error(RMSE)and standard deviation(SD)of MAE were used to evaluate the performance of automatic system for testing the whole test dataset.Results The accuracy,precision,recall and specificity of DenseNet network for automatically classifying T7—T8 layer from chest CT images was 95.06%,84.83%,92.27%and 95.78%,respectively,which were all higher than those of the other layer selection networks.In segmentation of SM,SAT,IMAT and overall,DSC and IoU of UNet++network were all higher,while 95HD of UNet++network were all lower than those of the other segmentation networks.Using DenseNet as the layer selection network and UNet++as the segmentation network,MAE of the automatic body composition analysis system for predicting SM,SAT,IMAT,VAT and MAE was 27.09,6.95,6.65 and 3.35 cm 2,respectively.Conclusion The body composition analysis system based on chest CT could be used to assess content of chest muscle and adipose.Among them,the UNet++network had better segmentation performance in adipose tissue than SM.展开更多
It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly eval...It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient databasegeneration method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit’s inclination and right ascension of ascending node(RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than 0.01°on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model.展开更多
Objective To observe the correlations of chest CT quantitative parameters in patients with acute exacerbation of chronic obstructive pulmonary disease(AECOPD)with blood eosinophil(EOS)level.Methods Chest CT data of 16...Objective To observe the correlations of chest CT quantitative parameters in patients with acute exacerbation of chronic obstructive pulmonary disease(AECOPD)with blood eosinophil(EOS)level.Methods Chest CT data of 162 AECOPD patients with elevated eosinophils were retrospectively analyzed.The patients were divided into low EOS group(n=105)and high EOS group(n=57)according to the absolute counting of blood EOS.The quantitative CT parameters,including the number of whole lung bronchi and the volume of blood vessels,low-attenuation area percentage(LAA%)of whole lung,of left/right lung and each lobe of lung,as well as the luminal diameter(LD),wall thickness(WT),wall area(WA)and WA percentage of total bronchial cross-section(WA%)of grade 3 to 8 bronchi were compared between groups.Spearman correlations were performed to analyze the correlations of quantitative CT parameters with blood EOS level.Results LAA%of the whole lung,of the left/right lung and each lobe of lung,as well as of the upper lobe of right lung LD grade 4,middle lobe of right lung WT grade 5,upper lobe of right lung WA grade 4,middle lobe of right lung WA grade 5 and lower lobe of left lung WA grade 3 in low EOS group were all higher than those in high EOS group(all P<0.05).Except for the upper lobe of right lung LD grade 4,the above quantitative CT indexes being significant different between groups were all weakly and negatively correlated with blood EOS level(r=-0.335 to-0.164,all P<0.05).Conclusion Chest CT quantitative parameters of AECOPD patients were correlated with blood EOS level,among which LAA%,a part of WT and WA were all weakly negatively correlated with blood EOS level.展开更多
Aptamers are a type of single-chain oligonucleotide that can combine with a specific target.Due to their simple preparation,easy modification,stable structure and reusability,aptamers have been widely applied as bioch...Aptamers are a type of single-chain oligonucleotide that can combine with a specific target.Due to their simple preparation,easy modification,stable structure and reusability,aptamers have been widely applied as biochemical sensors for medicine,food safety and environmental monitoring.However,there is little research on aptamer-target binding mechanisms,which limits their application and development.Computational simulation has gained much attention for revealing aptamer-target binding mechanisms at the atomic level.This work summarizes the main simulation methods used in the mechanistic analysis of aptamer-target complexes,the characteristics of binding between aptamers and different targets(metal ions,small organic molecules,biomacromolecules,cells,bacteria and viruses),the types of aptamer-target interactions and the factors influencing their strength.It provides a reference for further use of simulations in understanding aptamer-target binding mechanisms.展开更多
文摘Risk management often plays an important role in decision making un-der uncertainty.In quantitative risk management,assessing and optimizing risk metrics requires eficient computing techniques and reliable theoretical guarantees.In this pa-per,we introduce several topics on quantitative risk management and review some of the recent studies and advancements on the topics.We consider several risk metrics and study decision models that involve the metrics,with a main focus on the related com-puting techniques and theoretical properties.We show that stochastic optimization,as a powerful tool,can be leveraged to effectively address these problems.
文摘As a non-contact ultra-precision machining method,abrasive water jet polishing(AWJP)has signi-ficant application in optical elements processing due to its stable tool influence function(TIF),no subsurface damage and strong adaptability to workpiece shapes.In this study,the effects of jet pressure,nozzle diameter and impinging angle on the distribution of pressure,velocity and wall shear stress in the polishing flow field were systematically analyzed by computational fluid dynamics(CFD)simulation.Based on the Box-Behnken experimental design,a response surface regression model was constructed to investigate the influence mech-anism of process parameters on material removal rate(MRR)and surface roughness(Ra)of fused silica.And experimental results showed that increasing jet pressure and nozzle diameter significantly improved MRR,consistent with shear stress distribution revealed by CFD simulations.However,increasing jet pressure and impinging angle caused higher Ra values,which was unfavorable for surface quality improvement.Genetic algorithm(GA)was used for multi-objective optimization to establish Pareto solutions,achieving concurrent optimization of polishing efficiency and surface quality.A parameter combination of 2 MPa jet pressure,0.3 mm nozzle diameter,and 30°impinging angle achieved MRR of 169.05μm^(3)/s and Ra of 0.50 nm.Exper-imental verification showed prediction errors of 4.4%(MRR)and 3.8%(Ra),confirming the model’s reliabil-ity.This parameter optimization system provides theoretical basis and technical support for ultra-precision polishing of complex curved optical components.
基金Shanxi Province Higher Education Science and Technology Innovation Fund Project(2022-676)Shanxi Soft Science Program Research Fund Project(2016041008-6)。
文摘In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.
基金Supported by the National Natural Science Foundation of China(12061048)NSF of Jiangxi Province(20232BAB201026,20232BAB201018)。
文摘In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introducing only one additional evaluation of the function in each step.Furthermore,some new efficient methods with a higher-order of convergence are obtained by using only a single matrix inversion in each iteration.Analyses of convergence properties and computational efficiency of these new methods are made and testified by several numerical problems.By comparison,the new schemes are more efficient than the corresponding existing ones,particularly for large problem sizes.
基金National Natural Science Foundation of China(No.12574332)the Space Optoelectronic Measurement and Perception Lab.,Beijing Institute of Control Engineering(No.LabSOMP-2023-10)Major Science and Technology Innovation Program of Xianyang City(No.L2024-ZDKJ-ZDCGZH-0021)。
文摘Fourier Ptychographic Microscopy(FPM)is a high-throughput computational optical imaging technology reported in 2013.It effectively breaks through the trade-off between high-resolution imaging and wide-field imaging.In recent years,it has been found that FPM is not only a tool to break through the trade-off between field of view and spatial resolution,but also a paradigm to break through those trade-off problems,thus attracting extensive attention.Compared with previous reviews,this review does not introduce its concept,basic principles,optical system and series of applications once again,but focuses on elaborating the three major difficulties faced by FPM technology in the process from“looking good”in the laboratory to“working well”in practical applications:mismatch between numerical model and physical reality,long reconstruction time and high computing power demand,and lack of multi-modal expansion.It introduces how to achieve key technological innovations in FPM through the dual drive of Artificial Intelligence(AI)and physics,including intelligent reconstruction algorithms introducing machine learning concepts,optical-algorithm co-design,fusion of frequency domain extrapolation methods and generative adversarial networks,multi-modal imaging schemes and data fusion enhancement,etc.,gradually solving the difficulties of FPM technology.Conversely,this review deeply considers the unique value of FPM technology in potentially feeding back to the development of“AI+optics”,such as providing AI benchmark tests under physical constraints,inspirations for the balance of computing power and bandwidth in miniaturized intelligent microscopes,and photoelectric hybrid architectures.Finally,it introduces the industrialization path and frontier directions of FPM technology,pointing out that with the promotion of the dual drive of AI and physics,it will generate a large number of industrial application case,and looks forward to the possibilities of future application scenarios and expansions,for instance,body fluid biopsy and point-of-care testing at the grassroots level represent the expansion of the growth market.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(Grant No.2022D01B 187)。
文摘Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure challenges in edge environments.However,the diversity of clients in edge cloud computing presents significant challenges for FL.Personalized federated learning(pFL)received considerable attention in recent years.One example of pFL involves exploiting the global and local information in the local model.Current pFL algorithms experience limitations such as slow convergence speed,catastrophic forgetting,and poor performance in complex tasks,which still have significant shortcomings compared to the centralized learning.To achieve high pFL performance,we propose FedCLCC:Federated Contrastive Learning and Conditional Computing.The core of FedCLCC is the use of contrastive learning and conditional computing.Contrastive learning determines the feature representation similarity to adjust the local model.Conditional computing separates the global and local information and feeds it to their corresponding heads for global and local handling.Our comprehensive experiments demonstrate that FedCLCC outperforms other state-of-the-art FL algorithms.
基金supported by the National Natural Science Foundation of China(Grant Nos.52425211,52272360,and 52472394)Chongqing Natural Science Foundation(CSTB2023NSCQ-MSX0300)。
文摘Trans-medium flight vehicles can combine high aerial maneuverability and underwater concealment ability,which have attracted much attention recently.As the most crucial procedure,the trajectory design generally determines the trans-medium flight vehicle performance.To quantitatively analyze the flight vehicle performance,an entire aerial-aquatic trajectory model is developed in this paper.Different from modeling a trajectory purely for the water entry process,the constructed entire trajectory model has integrated aerial,water entry,and underwater trajectories together,which can consider the influence of the connected trajectories.As for the aerial and underwater trajectories,explicit dynamic models are established to obtain the trajectory parameters.Due to the complicated fluid force during high-velocity water entry,a computational fluid dynamics model is investigated to analyze this phase.The compu-tational domain size is adaptively refined according to the final aerial trajectory state,where the redundant computational domain is removed.An entire trajectory optimization problem is then formulated to maximize the total flight range via tuning the joint states of different trajectories.Simultaneously,several constraints,i.e.,the max impact load,trajectory height,etc.,are involved in the optimization problem.Rather than directly optimizing by a heuristic algorithm,a multi-surrogate cooperative sampling-based optimization method is proposed to alleviate the computational complexity of the entire trajectory optimization problem.In this method,various surrogates coopera-tively generate infill sample points,thereby preventing the poor approximation.After optimization,the total flight range can be improved by 20%,while all the constraints are satisfied.The result demonstrates the effectiveness and practicability of the developed model and optimization framework.
基金Projects(51925808,52078504,51822803) supported by the National Natural Science Foundation of ChinaProject(2022JJ10082) supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(N2022Z004) supported by the Research on Technology Development Trend and Key Common Problems in Railway,ChinaProject(Xplorer Prize 2021) supported by the Tencent Foundation,China。
文摘Installing the splitter plates is a passive aerodynamic solution for eliminating vortex-induced vibration (VIV). However, the influences of splitter plates on the VIV and aerostatic performances are more complicated due to aerodynamic interference between highway and railway decks. To study the effects of splitter plates, wind tunnel experiments for measuring VIV and aerostatic forces of twin decks under two opposite flow directions were conducted, while the surrounding flow and wind pressure of static twin decks with and without splitter plates are numerically simulated. The results showed that the incoming flow direction affects the VIV response and aerostatic coefficients. The highway deck has poor vertical and torsional VIV, and the VIV region and amplitude are different under different directions. While the railway deck only has vertical VIV when located upstream. The splitter plates can impede the process of vortex generation, shedding and impinging at the gap between twin deck, and significantly reducing the surface fluctuating pressure coefficient, thus effectively suppressing the VIV of twin decks. While, the splitter plates hurt the upstream deck regarding static wind stability and have little effect on the downstream deck. The splitter plates of appropriate width are recommended to improve VIV performances in twin parallel bridges.
基金supported by the National Natural Science Foundation of China(61571149,62001139)the Initiation Fund for Postdoctoral Research in Heilongjiang Province(LBH-Q19098)the Natural Science Foundation of Heilongjiang Province(LH2020F0178).
文摘Fog computing has emerged as an important technology which can improve the performance of computation-intensive and latency-critical communication networks.Nevertheless,the fog computing Internet-of-Things(IoT)systems are susceptible to malicious eavesdropping attacks during the information transmission,and this issue has not been adequately addressed.In this paper,we propose a physical-layer secure fog computing IoT system model,which is able to improve the physical layer security of fog computing IoT networks against the malicious eavesdropping of multiple eavesdroppers.The secrecy rate of the proposed model is analyzed,and the quantum galaxy–based search algorithm(QGSA)is proposed to solve the hybrid task scheduling and resource management problem of the network.The computational complexity and convergence of the proposed algorithm are analyzed.Simulation results validate the efficiency of the proposed model and reveal the influence of various environmental parameters on fog computing IoT networks.Moreover,the simulation results demonstrate that the proposed hybrid task scheduling and resource management scheme can effectively enhance secrecy performance across different communication scenarios.
文摘Objective To observe the value of self-supervised deep learning artificial intelligence(AI)noise reduction technology based on the nearest adjacent layer applicated in ultra-low dose CT(ULDCT)for urinary calculi.Methods Eighty-eight urinary calculi patients were prospectively enrolled.Low dose CT(LDCT)and ULDCT scanning were performed,and the effective dose(ED)of each scanning protocol were calculated.The patients were then randomly divided into training set(n=75)and test set(n=13),and a self-supervised deep learning AI noise reduction system based on the nearest adjacent layer constructed with ULDCT images in training set was used for reducing noise of ULDCT images in test set.In test set,the quality of ULDCT images before and after AI noise reduction were compared with LDCT images,i.e.Blind/Referenceless Image Spatial Quality Evaluator(BRISQUE)scores,image noise(SD ROI)and signal-to-noise ratio(SNR).Results The tube current,the volume CT dose index and the dose length product of abdominal ULDCT scanning protocol were all lower compared with those of LDCT scanning protocol(all P<0.05),with a decrease of ED for approximately 82.66%.For 13 patients with urinary calculi in test set,BRISQUE score showed that the quality level of ULDCT images before AI noise reduction reached 54.42%level but raised to 95.76%level of LDCT images after AI noise reduction.Both ULDCT images after AI noise reduction and LDCT images had lower SD ROI and higher SNR than ULDCT images before AI noise reduction(all adjusted P<0.05),whereas no significant difference was found between the former two(both adjusted P>0.05).Conclusion Self-supervised learning AI noise reduction technology based on the nearest adjacent layer could effectively reduce noise and improve image quality of urinary calculi ULDCT images,being conducive for clinical application of ULDCT.
文摘Dual-layer spectral detector CT is a new spectrum CT imaging technology based on detector being able to obtain both images similar to true plain and spectral images in one time scanning.The reconstructed multi-parameter spectral images can not only improve image quality,enhance tissue contrast,increase the visualization and detection ability of occult lesions,but also provide qualitative and quantitative analysis of the lesions,so as to provide more imaging information and multi-dimensional diagnostic basis.The research progresses of dual-layer spectral detector CT for preoperative evaluation on colorectal cancer were reviewed in this article.
文摘Objective To observe the value of preoperative CT radiomics models for predicting composition of in vivo urinary calculi.Methods Totally 543 urolithiasis patients were retrospectively enrolled and divided into calcium oxalate monohydrate stone group(group A,n=373),anhydrous uric acid stone group(group B,n=86),carbonate apatite group(group C,n=30),ammonium urate stone group(group D,n=28)and ammonium magnesium phosphate hexahydrate stone group(group E,n=26)according to the composition of calculi,also divided into training set and test set at the ratio of 7∶3.Radiomics features were extracted and screened based on plain CT images of urinary system.Five binary task models(model A—E corresponding to group A—E)and a quinary task model were constructed using least absolute shrinkage and selection operator algorithm for predicting the composition of calculi in vivo.Then receiver operating characteristic curves were drawn,and the area under the curves(AUC)were calculated to evaluate the predictive efficacy of binary task models,while the accuracy,precision,recall and F1 score were used to evaluate the predictive efficacy of the quinary task model.Results All binary task models had good efficacy for predicting the composition of urinary calculi in vivo,with AUC of 0.860—0.948 in training set and of 0.856—0.933 in test set.The accuracy,precision,recall and F1 score of the quinary task model for predicting the composition of in vivo urinary calculi was 82.25%,83.79%,46.23%and 0.596 in training set,respectively,while was 80.63%,75.26%,43.48%and 0.551 in test set,respectively.Conclusion Binary task radiomics models based on preoperative plain CT had good efficacy for predicting the composition of in vivo urinary calculi,while the quinary task radiomics model had high accuracy but relatively poor stability.
文摘Objective To establish a body composition analysis system based on chest CT,and to observe its value for evaluating content of chest muscle and adipose.Methods T7—T8 layer CT images of 108 pneumonia patients were collected(segmented dataset),and chest CT data of 984 patients were screened from the COVID 19-CT dataset(10 cases were randomly selected as whole test dataset,the remaining 974 cases were selected as layer selection dataset).T7—T8 layer was classified based on convolutional neural network(CNN)derived networks,including ResNet,ResNeXt,MobileNet,ShuffleNet,DenseNet,EfficientNet and ConvNeXt,then the accuracy,precision,recall and specificity were used to evaluate the performance of layer selection dataset.The skeletal muscle(SM),subcutaneous adipose tissue(SAT),intermuscular adipose tissue(IMAT)and visceral adipose tissue(VAT)were segmented using classical fully CNN(FCN)derived network,including FCN,SegNet,UNet,Attention UNet,UNET++,nnUNet,UNeXt and CMUNeXt,then Dice similarity coefficient(DSC),intersection over union(IoU)and 95 Hausdorff distance(HD)were used to evaluate the performance of segmented dataset.The automatic body composition analysis system was constructed based on optimal layer selection network and segmentation network,the mean absolute error(MAE),root mean squared error(RMSE)and standard deviation(SD)of MAE were used to evaluate the performance of automatic system for testing the whole test dataset.Results The accuracy,precision,recall and specificity of DenseNet network for automatically classifying T7—T8 layer from chest CT images was 95.06%,84.83%,92.27%and 95.78%,respectively,which were all higher than those of the other layer selection networks.In segmentation of SM,SAT,IMAT and overall,DSC and IoU of UNet++network were all higher,while 95HD of UNet++network were all lower than those of the other segmentation networks.Using DenseNet as the layer selection network and UNet++as the segmentation network,MAE of the automatic body composition analysis system for predicting SM,SAT,IMAT,VAT and MAE was 27.09,6.95,6.65 and 3.35 cm 2,respectively.Conclusion The body composition analysis system based on chest CT could be used to assess content of chest muscle and adipose.Among them,the UNet++network had better segmentation performance in adipose tissue than SM.
基金supported by the National Natural Science Foundation of China (12072365)the Natural Science Foundation of Hunan Province of China (2020JJ4657)。
文摘It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient databasegeneration method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit’s inclination and right ascension of ascending node(RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than 0.01°on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model.
文摘Objective To observe the correlations of chest CT quantitative parameters in patients with acute exacerbation of chronic obstructive pulmonary disease(AECOPD)with blood eosinophil(EOS)level.Methods Chest CT data of 162 AECOPD patients with elevated eosinophils were retrospectively analyzed.The patients were divided into low EOS group(n=105)and high EOS group(n=57)according to the absolute counting of blood EOS.The quantitative CT parameters,including the number of whole lung bronchi and the volume of blood vessels,low-attenuation area percentage(LAA%)of whole lung,of left/right lung and each lobe of lung,as well as the luminal diameter(LD),wall thickness(WT),wall area(WA)and WA percentage of total bronchial cross-section(WA%)of grade 3 to 8 bronchi were compared between groups.Spearman correlations were performed to analyze the correlations of quantitative CT parameters with blood EOS level.Results LAA%of the whole lung,of the left/right lung and each lobe of lung,as well as of the upper lobe of right lung LD grade 4,middle lobe of right lung WT grade 5,upper lobe of right lung WA grade 4,middle lobe of right lung WA grade 5 and lower lobe of left lung WA grade 3 in low EOS group were all higher than those in high EOS group(all P<0.05).Except for the upper lobe of right lung LD grade 4,the above quantitative CT indexes being significant different between groups were all weakly and negatively correlated with blood EOS level(r=-0.335 to-0.164,all P<0.05).Conclusion Chest CT quantitative parameters of AECOPD patients were correlated with blood EOS level,among which LAA%,a part of WT and WA were all weakly negatively correlated with blood EOS level.
文摘Aptamers are a type of single-chain oligonucleotide that can combine with a specific target.Due to their simple preparation,easy modification,stable structure and reusability,aptamers have been widely applied as biochemical sensors for medicine,food safety and environmental monitoring.However,there is little research on aptamer-target binding mechanisms,which limits their application and development.Computational simulation has gained much attention for revealing aptamer-target binding mechanisms at the atomic level.This work summarizes the main simulation methods used in the mechanistic analysis of aptamer-target complexes,the characteristics of binding between aptamers and different targets(metal ions,small organic molecules,biomacromolecules,cells,bacteria and viruses),the types of aptamer-target interactions and the factors influencing their strength.It provides a reference for further use of simulations in understanding aptamer-target binding mechanisms.