The exponential growth of literature is constraining researchers’access to comprehensive information in related fields.While natural language processing(NLP)may offer an effective solution to literature classificatio...The exponential growth of literature is constraining researchers’access to comprehensive information in related fields.While natural language processing(NLP)may offer an effective solution to literature classification,it remains hindered by the lack of labelled dataset.In this article,we introduce a novel method for generating literature classification models through semi-supervised learning,which can generate labelled dataset iteratively with limited human input.We apply this method to train NLP models for classifying literatures related to several research directions,i.e.,battery,superconductor,topological material,and artificial intelligence(AI)in materials science.The trained NLP‘battery’model applied on a larger dataset different from the training and testing dataset can achieve F1 score of 0.738,which indicates the accuracy and reliability of this scheme.Furthermore,our approach demonstrates that even with insufficient data,the not-well-trained model in the first few cycles can identify the relationships among different research fields and facilitate the discovery and understanding of interdisciplinary directions.展开更多
MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical str...MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical strength,etc.This review begins by presenting MXenes,providing insights into their structural characteristics,synthesis methods,and surface functional groups.The review covers a thorough analysis of MXene surface properties,including surface chemistry and termination group impacts.The properties of MXenes are influenced by their synthesis,which can be fluorine-based or fluorinedependent.Fluorine-based synthesis techniques involve etching with fluorine-based reagents,mainly including HF or LiF/HCl,while fluorine-free methods include electrochemical etching,chemical vapor deposition(CVD),alkaline etching,Lewis acid-based etching,etc.These techniques result in the emergence of functional groups such as-F,-O,-OH,-Cl,etc.on the MXenes surface,depending on the synthesis method used.Properties of MXenes,such as electrical conductivity,electronic properties,catalytic activity,magnetic properties,mechanical strength,and chemical and thermal stability,are examined,and the role of functional groups in determining these properties is explored.The review delves into the diverse applications of MXenes,encompassing supercapacitors,battery materials,hydrogen storage,fuel cells,electromagnetic interference(EMI) shielding,pollutant removal,water purification,flexible electronics,sensors,additive manufacturing,catalysis,biomedical and healthcare fields,etc.Finally,this article outlines the challenges and opportunities in the current and future development of MXenes research,addressing various aspects such as synthesis scalability,etching challenges,and multifunctionality,and exploring novel applications.The review concludes with future prospects and conclusions envisioning the impact of MXenes on future technologies and innovation.展开更多
Chinese Space Station(CSS)has been fully deployed by the end of 2022,and the facility has entered into the application and development phase.It has conducted scientific research projects in various fields,such as spac...Chinese Space Station(CSS)has been fully deployed by the end of 2022,and the facility has entered into the application and development phase.It has conducted scientific research projects in various fields,such as space life science and biotechnology,space materials science,microgravity fundamental physics,fluid physics,combustion science,space new technologies,and applications.In this review,we introduce the progress of CSS development and provide an overview of the research conducted in Chinese Space Station and the recent scientific findings in several typical research fields.Such compelling findings mainly concern the rapid solidification of ultra-high temperature alloy melts,dynamics of fluid transport in space,gravity scaling law of boiling heat transfer,vibration fluidization phenomenon of particulate matter,cold atom interferometer technology under high microgravity and related equivalence principle testing,the full life cycle of rice under microgravity and so forth.Furthermore,the planned scientific research and corresponding prospects of Chinese space station in the next few years are presented.展开更多
The prediction of chemical synthesis pathways plays a pivotal role in materials science research. Challenges, such as the complexity of synthesis pathways and the lack of comprehensive datasets, currently hinder our a...The prediction of chemical synthesis pathways plays a pivotal role in materials science research. Challenges, such as the complexity of synthesis pathways and the lack of comprehensive datasets, currently hinder our ability to predict these chemical processes accurately. However, recent advancements in generative artificial intelligence(GAI), including automated text generation and question–answering systems, coupled with fine-tuning techniques, have facilitated the deployment of large-scale AI models tailored to specific domains. In this study, we harness the power of the LLaMA2-7B model and enhance it through a learning process that incorporates 13878 pieces of structured material knowledge data.This specialized AI model, named Mat Chat, focuses on predicting inorganic material synthesis pathways. Mat Chat exhibits remarkable proficiency in generating and reasoning with knowledge in materials science. Although Mat Chat requires further refinement to meet the diverse material design needs, this research undeniably highlights its impressive reasoning capabilities and innovative potential in materials science. Mat Chat is now accessible online and open for use, with both the model and its application framework available as open source. This study establishes a robust foundation for collaborative innovation in the integration of generative AI in materials science.展开更多
The defence sector is now at an advanced level,catering to the global scenario,and countries also invest heavily in research and development.Countries around the world have spent a lot of money on research and develop...The defence sector is now at an advanced level,catering to the global scenario,and countries also invest heavily in research and development.Countries around the world have spent a lot of money on research and development over the years in order to stay ahead of their competitors.Lightweight materials are critical in defence applications because they allow components to be lighter without sacrificing strength.This review provides an overview of the research related to defence applications.The book provides comprehensive details on current trends in the application of lightweight materials in defence.This review also includes historical and current perspectives on defence technologies.It discusses uses of lightweight materials such as metal matrix composites,polymer composites,ceramic matrix composites,fiber composites in defence sectors Finally,the review paper also emphasizes future military applications of lightweight materials.展开更多
In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cab...In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cables with high strength,high elongation,and high energy-absorbing capacity.Therefore,a constant resistance energy-absorbing(CREA)material is developed.In this study,the dynamic characteristics of the new material are obtained via the drop hammer tests and the Split Hopkinson Pressure Bar(SHPB)tests of the new material and two common bolt(CB)materials widely used in the field.The test results of drop hammer test and SHPB test show that the percentage elongation of CREA material is more than 2.64 and 3.22 times those of the CB material,and the total impact energy acting on CREA material is more than 18.50 and 21.84 times,respectively,indicating that the new material has high elongation and high energy-absorbing capacity.Subsequently,the CREA bolts and cables using the new material are developed,which are applied in roadways with high stress and strong dynamic disturbance.The field monitoring results show that CREA bolts and cables can effectively control the surrounding rock deformation and ensure engineering safety.展开更多
In order to successively compete with supercapacitors, an ability of fast discharge is a must for lithium-ion batteries. From this point of view, stoichiometric and substituted lithium manganese spinels as cathode mat...In order to successively compete with supercapacitors, an ability of fast discharge is a must for lithium-ion batteries. From this point of view, stoichiometric and substituted lithium manganese spinels as cathode materials are one of the most prospective candidates, especially in their nanosized form. In this article, an overview of the most recent data regarding physico-chemical and electrochemical properties of lithium manganese spinels, especially, LiMn2O4 and LiNi0.5Mn1.5O4, synthesized by means of various methods is presented, with special emphasis of their use in high-rate electrochemical applications. In particular, specific capacities and rate capabilities of spinel materials are analyzed. It is suggested that reduced specific capacity is determined primarily by the aggregation of material particles, whereas good high-rate capability is governed not only by the size of crystallites but also by the perfectness of crystals. The most technologically advantageous solutions are described, existing gaps in the knowledge of spinel materials are outlined, and the ways of their filling are suggested, in a hope to be helpful in keeping lithium batteries afloat in the struggle for a worthy place among electrochemical energy systems of the 21st century.展开更多
Ferroelectrics are a type of material with a polar structure and their polarization direction can be inverted reversibly by applying an electric field.They have attracted tremendous attention for their extensive appli...Ferroelectrics are a type of material with a polar structure and their polarization direction can be inverted reversibly by applying an electric field.They have attracted tremendous attention for their extensive applications in non-volatile memory,sensors and neuromorphic computing.However,conventional ferroelectric materials face insulating and interfacial issues in the commercialization process.In contrast,two-dimensional(2D)ferroelectric materials usually have excellent semiconductor performance,clean van der Waals interfaces and robust ferroelectric order in atom-thick layers,and hold greater promise for constructing multifunctional ferroelectric optoelectronic devices and nondestructive ultra-high-density memory.Recently,2D ferroelectrics have obtained impressive breakthroughs,showing overwhelming superiority.Herein,firstly,the progress of experimental research on 2D ferroelectric materials is reviewed.Then,the preparation of 2D ferroelectric devices and their applications are discussed.Finally,the future development trend of 2D ferroelectrics is looked at.展开更多
Electric double-layer capacitors(EDLCs) are emerging technologies to meet the ever-increasing demand for sustainable energy storage devices and systems in the 21 st Century owing to their advantages such as long lifet...Electric double-layer capacitors(EDLCs) are emerging technologies to meet the ever-increasing demand for sustainable energy storage devices and systems in the 21 st Century owing to their advantages such as long lifetime, fast charging speed and environmentally-friendly nature, which play a critical part in satisfying the demand of electronic devices and systems. Although it is generally accepted that EDLCs are suitable for working at low temperatures down to-40℃, there is a lack of comprehensive review to summarize the quantified performance of EDLCs when they are subjected to low-temperature environments. The rapid and growing demand for high-performance EDLCs for auxiliary power systems in the aeronautic and aerospace industries has triggered the urge to extend their operating temperature range,especially at temperatures below-40℃. This article presents an overview of EDLC’s performance and their challenges at extremely low temperatures including the capability of storing a considerable amount of electrical energy and maintaining long-term stability. The selection of electrolytes and electrode materials is crucial to the performance of EDLCs operating at a desired low-temperature range. Strategies to improve EDLC’s performance at extremely low temperatures are discussed, followed by the future perspectives to motivate more future studies to be conducted in this area.展开更多
Terahertz waves, sitting in the gap between the middle infrared and millimeter wave regions, are known as the last vacant area of the electromagnetic spectrum that has not quite been understood and brought into applic...Terahertz waves, sitting in the gap between the middle infrared and millimeter wave regions, are known as the last vacant area of the electromagnetic spectrum that has not quite been understood and brought into applications. The Terahertz region has been the focus of research worldwide since early 1990s. Due to their unique characteristics, Terahertz technologies have a wide range of applications, such as hazard detection, high speed data communications, radio astronomy, and biomedical imaging.展开更多
Inductively-coupled plasma mass spectrometry (ICP-MS) has made much progress since its birth in the late 1990s. This paper will give a rather systematic overview on the use of this technique in new devices and technol...Inductively-coupled plasma mass spectrometry (ICP-MS) has made much progress since its birth in the late 1990s. This paper will give a rather systematic overview on the use of this technique in new devices and technologies related to plasma source, sample-introducing device and detecting spectrometer etc. In this overview, an emphasis will be put on the evaluation of the ICP- MS technique in combination with a series of physical, chemical and biological techniques, such as laser ablation (LA), capillary electrophoresis (CE) and high performance liquid chromatograph (HPLC), along with their representative high accuracy and high sensitivity. Finally, comprehensive and fruitful applications of the ICP-MS and its combinative techniques in the detection of trace metallic elements and isotopes in complex biological and environmental samples will be revealed.展开更多
By summarizing the composition,classification,and performance characterization of functional adhesive materials,the adhesion mechanisms of functional adhesive materials,such as adsorption/surface reaction,diffusion,me...By summarizing the composition,classification,and performance characterization of functional adhesive materials,the adhesion mechanisms of functional adhesive materials,such as adsorption/surface reaction,diffusion,mechanical interlocking,and electrostatic adsorption,are expounded.The research status of these materials in oil and gas drilling and production engineering field such as lost circulation prevention/control,wellbore stabilization,hydraulic fracturing,and profile control and water plugging,and their application challenges and prospects in oil and gas drilling and production are introduced comprehensively.According to the applications of functional adhesive materials in the field of oil and gas drilling and production at this stage,the key research directions of functional adhesive materials in the area of oil and gas drilling and production are proposed:(1)blending and modifying thermoplastic resins or designing curable thermoplastic resins to improve the bonding performance and pressure bearing capacity of adhesive lost circulation materials;(2)introducing low-cost adhesive groups and positive charge structures into polymers to reduce the cost of wellbore strengthening agents and improve their adhesion performance on the wellbore;(3)introducing thermally reversible covalent bond into thermosetting resin to prevent backflow of proppant and improve the compressive strength of adhesive proppant;(4)introducing thermally reversible covalent bonds into thermoplastic polymers to improve the temperature resistance,salt-resistance and water shutoff performance of adhesive water shutoff agents.展开更多
The rising cost and limited availability of fossil fuels, and the increasing concerns related to their role on global pollution and greenhouse effect have pushed considerably the need to accelerate the transition to a...The rising cost and limited availability of fossil fuels, and the increasing concerns related to their role on global pollution and greenhouse effect have pushed considerably the need to accelerate the transition to a more sustainable use of energy based largely on renewable energy sources. Nanocarbon materials play a critical role in this transition, as they are the key materials for components of different devices necessary in enabling this transition (batteries, fuel cells, solar cells, etc.). This issue collects 22 contributions, including one perspective and six review papers on the topic of carbon materials for energy applications, written by well-known experts in this field. It is really an exciting special issue that gives a very updated view of this topic, as well as trends and outlooks in this breakthrough research area. The initial perspective paper introduces the different possibilities offered from the growing level of knowledge in this area, testified from the exponentially rising number of publications. It also discusses the basie concepts for a rational design of these nanomaterials. The lk)llowing six reviews address different specific aspects of synthesis, characterization and use of carbon nanomaterials, from fuel cells to composite electrodes, supercapacitors and photoelectrochemical devices for CO2 conversion. These reviews represent an unique opportunity for the readers to be updated on the latest developments of new carbon families such as fullerene, grapbene, and carbon nanotube, and their derived nanocarbon materials (from carbon quantum dots to nanohorn, nanofiber, nano ribbon, etc.). Second generation nanocarbons, including modification of these nanocarbons by surface functionalization or doping with heteroatoms to create specific tailored properties, and nanoarchitectured supramolecular hybrids, are also discussed. Finally, 1 communication and 14 full articles discuss several aspects of the use of these nanocarbon materials to develop new catalysts for a range of applications (from biomass conversion to Fisher-Tropsch reaction and electrochemical devices) and new materials for energy storage and conversion (adsorption pumps, Li-ion and Li-S batteries, electrodes for electrochemical uses). We thus believe that this special issue dedicated to the use and development of carbon materials for energy applications represents a unique occasion for young and experienced researchers as well as for managers in the field of sustainable energy to have an updated view on this enabling topic for the future of our society. We thus invite all to have this special issue as a privileged component of your bookshelf.展开更多
Terahertz waves, sitting in the gap between the middle infrared and millimeter wave regions, are known as the last vacant area of the electromagnetic spectrum that has not quite been understood and brought into applic...Terahertz waves, sitting in the gap between the middle infrared and millimeter wave regions, are known as the last vacant area of the electromagnetic spectrum that has not quite been understood and brought into applications. The Terahertz region has been the focus of research worldwide since early 1990s. Due to their unique characteristics, Terahertz technologies have a wide range of applications, such as hazard detection, high speed data communications, radio astronomy, and biomedical imaging.展开更多
Terahertz waves, sitting in the gap between the middle infrared and millimeter wave regions, are known as the last vacant area of the electromagnetic spectrum that has not quite been understood and brought into applic...Terahertz waves, sitting in the gap between the middle infrared and millimeter wave regions, are known as the last vacant area of the electromagnetic spectrum that has not quite been understood and brought into applications. The Terahertz region has been the focus of research worldwide since early 1990s. Due to their unique characteristics, Terahertz technologies have a wide range of applications, such as hazard detection, high speed data communications, radio astronomy, and biomedical imaging.展开更多
Terahertz wave, sitting in the gap between middle infrared and millimeter wave, has been known as the last vacant area in spectrum that has not been quite understood and brought into applications. It has been the focu...Terahertz wave, sitting in the gap between middle infrared and millimeter wave, has been known as the last vacant area in spectrum that has not been quite understood and brought into applications. It has been the focus of research worldwide since early 1990s. Due to the unique characteristics of Terahertz wave, Terahertz technologies have a wide range of applications, such as hazard detection, high speed data communications, radio astronomy, biomedical imaging, etc.展开更多
基金funded by the Informatization Plan of Chinese Academy of Sciences(Grant No.CASWX2021SF-0102)the National Key R&D Program of China(Grant Nos.2022YFA1603903,2022YFA1403800,and 2021YFA0718700)+1 种基金the National Natural Science Foundation of China(Grant Nos.11925408,11921004,and 12188101)the Chinese Academy of Sciences(Grant No.XDB33000000)。
文摘The exponential growth of literature is constraining researchers’access to comprehensive information in related fields.While natural language processing(NLP)may offer an effective solution to literature classification,it remains hindered by the lack of labelled dataset.In this article,we introduce a novel method for generating literature classification models through semi-supervised learning,which can generate labelled dataset iteratively with limited human input.We apply this method to train NLP models for classifying literatures related to several research directions,i.e.,battery,superconductor,topological material,and artificial intelligence(AI)in materials science.The trained NLP‘battery’model applied on a larger dataset different from the training and testing dataset can achieve F1 score of 0.738,which indicates the accuracy and reliability of this scheme.Furthermore,our approach demonstrates that even with insufficient data,the not-well-trained model in the first few cycles can identify the relationships among different research fields and facilitate the discovery and understanding of interdisciplinary directions.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(NRF-2020R1A6A1A03043435 and 2020R1A2C1099862)supported by the Korea Institute for Advancement of Technology(KIAT)grant funded by the Korean Government(MOTIE)(P0012451,The Competency Development Program for Industry Specialist)。
文摘MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical strength,etc.This review begins by presenting MXenes,providing insights into their structural characteristics,synthesis methods,and surface functional groups.The review covers a thorough analysis of MXene surface properties,including surface chemistry and termination group impacts.The properties of MXenes are influenced by their synthesis,which can be fluorine-based or fluorinedependent.Fluorine-based synthesis techniques involve etching with fluorine-based reagents,mainly including HF or LiF/HCl,while fluorine-free methods include electrochemical etching,chemical vapor deposition(CVD),alkaline etching,Lewis acid-based etching,etc.These techniques result in the emergence of functional groups such as-F,-O,-OH,-Cl,etc.on the MXenes surface,depending on the synthesis method used.Properties of MXenes,such as electrical conductivity,electronic properties,catalytic activity,magnetic properties,mechanical strength,and chemical and thermal stability,are examined,and the role of functional groups in determining these properties is explored.The review delves into the diverse applications of MXenes,encompassing supercapacitors,battery materials,hydrogen storage,fuel cells,electromagnetic interference(EMI) shielding,pollutant removal,water purification,flexible electronics,sensors,additive manufacturing,catalysis,biomedical and healthcare fields,etc.Finally,this article outlines the challenges and opportunities in the current and future development of MXenes research,addressing various aspects such as synthesis scalability,etching challenges,and multifunctionality,and exploring novel applications.The review concludes with future prospects and conclusions envisioning the impact of MXenes on future technologies and innovation.
文摘Chinese Space Station(CSS)has been fully deployed by the end of 2022,and the facility has entered into the application and development phase.It has conducted scientific research projects in various fields,such as space life science and biotechnology,space materials science,microgravity fundamental physics,fluid physics,combustion science,space new technologies,and applications.In this review,we introduce the progress of CSS development and provide an overview of the research conducted in Chinese Space Station and the recent scientific findings in several typical research fields.Such compelling findings mainly concern the rapid solidification of ultra-high temperature alloy melts,dynamics of fluid transport in space,gravity scaling law of boiling heat transfer,vibration fluidization phenomenon of particulate matter,cold atom interferometer technology under high microgravity and related equivalence principle testing,the full life cycle of rice under microgravity and so forth.Furthermore,the planned scientific research and corresponding prospects of Chinese space station in the next few years are presented.
基金supported by the Informatization Plan of the Chinese Academy of Sciences (Grant No. CASWX2023SF-0101)the Key Research Program of Frontier Sciences, CAS (Grant No. ZDBS-LY-7025)+1 种基金the Youth Innovation Promotion Association CAS (Grant No. 2021167)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33020000)。
文摘The prediction of chemical synthesis pathways plays a pivotal role in materials science research. Challenges, such as the complexity of synthesis pathways and the lack of comprehensive datasets, currently hinder our ability to predict these chemical processes accurately. However, recent advancements in generative artificial intelligence(GAI), including automated text generation and question–answering systems, coupled with fine-tuning techniques, have facilitated the deployment of large-scale AI models tailored to specific domains. In this study, we harness the power of the LLaMA2-7B model and enhance it through a learning process that incorporates 13878 pieces of structured material knowledge data.This specialized AI model, named Mat Chat, focuses on predicting inorganic material synthesis pathways. Mat Chat exhibits remarkable proficiency in generating and reasoning with knowledge in materials science. Although Mat Chat requires further refinement to meet the diverse material design needs, this research undeniably highlights its impressive reasoning capabilities and innovative potential in materials science. Mat Chat is now accessible online and open for use, with both the model and its application framework available as open source. This study establishes a robust foundation for collaborative innovation in the integration of generative AI in materials science.
文摘The defence sector is now at an advanced level,catering to the global scenario,and countries also invest heavily in research and development.Countries around the world have spent a lot of money on research and development over the years in order to stay ahead of their competitors.Lightweight materials are critical in defence applications because they allow components to be lighter without sacrificing strength.This review provides an overview of the research related to defence applications.The book provides comprehensive details on current trends in the application of lightweight materials in defence.This review also includes historical and current perspectives on defence technologies.It discusses uses of lightweight materials such as metal matrix composites,polymer composites,ceramic matrix composites,fiber composites in defence sectors Finally,the review paper also emphasizes future military applications of lightweight materials.
基金This work was supported by the National Natural Science Foundation of China(Nos.41941018,52074164,and 42077267);the Natural Science Foundation of Shandong Province,China(Nos.2019SDZY04 and ZR2020JQ23)the Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program,China(No.2019KJG013).
文摘In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cables with high strength,high elongation,and high energy-absorbing capacity.Therefore,a constant resistance energy-absorbing(CREA)material is developed.In this study,the dynamic characteristics of the new material are obtained via the drop hammer tests and the Split Hopkinson Pressure Bar(SHPB)tests of the new material and two common bolt(CB)materials widely used in the field.The test results of drop hammer test and SHPB test show that the percentage elongation of CREA material is more than 2.64 and 3.22 times those of the CB material,and the total impact energy acting on CREA material is more than 18.50 and 21.84 times,respectively,indicating that the new material has high elongation and high energy-absorbing capacity.Subsequently,the CREA bolts and cables using the new material are developed,which are applied in roadways with high stress and strong dynamic disturbance.The field monitoring results show that CREA bolts and cables can effectively control the surrounding rock deformation and ensure engineering safety.
文摘In order to successively compete with supercapacitors, an ability of fast discharge is a must for lithium-ion batteries. From this point of view, stoichiometric and substituted lithium manganese spinels as cathode materials are one of the most prospective candidates, especially in their nanosized form. In this article, an overview of the most recent data regarding physico-chemical and electrochemical properties of lithium manganese spinels, especially, LiMn2O4 and LiNi0.5Mn1.5O4, synthesized by means of various methods is presented, with special emphasis of their use in high-rate electrochemical applications. In particular, specific capacities and rate capabilities of spinel materials are analyzed. It is suggested that reduced specific capacity is determined primarily by the aggregation of material particles, whereas good high-rate capability is governed not only by the size of crystallites but also by the perfectness of crystals. The most technologically advantageous solutions are described, existing gaps in the knowledge of spinel materials are outlined, and the ways of their filling are suggested, in a hope to be helpful in keeping lithium batteries afloat in the struggle for a worthy place among electrochemical energy systems of the 21st century.
基金Project supported by the National Key Research and Development Program of China (Grant No.2022YFB3505301)the National Natural Science Foundation of China (Grant Nos.12241403 and12174237)the Graduate Education Innovation Project in Shanxi Province (Grant No.2021Y484)。
文摘Ferroelectrics are a type of material with a polar structure and their polarization direction can be inverted reversibly by applying an electric field.They have attracted tremendous attention for their extensive applications in non-volatile memory,sensors and neuromorphic computing.However,conventional ferroelectric materials face insulating and interfacial issues in the commercialization process.In contrast,two-dimensional(2D)ferroelectric materials usually have excellent semiconductor performance,clean van der Waals interfaces and robust ferroelectric order in atom-thick layers,and hold greater promise for constructing multifunctional ferroelectric optoelectronic devices and nondestructive ultra-high-density memory.Recently,2D ferroelectrics have obtained impressive breakthroughs,showing overwhelming superiority.Herein,firstly,the progress of experimental research on 2D ferroelectric materials is reviewed.Then,the preparation of 2D ferroelectric devices and their applications are discussed.Finally,the future development trend of 2D ferroelectrics is looked at.
基金the Australian Research Council for its support through the Discovery Project scheme (DP190103186)the Industrial Transformation Training Centre Scheme(IC180100005)。
文摘Electric double-layer capacitors(EDLCs) are emerging technologies to meet the ever-increasing demand for sustainable energy storage devices and systems in the 21 st Century owing to their advantages such as long lifetime, fast charging speed and environmentally-friendly nature, which play a critical part in satisfying the demand of electronic devices and systems. Although it is generally accepted that EDLCs are suitable for working at low temperatures down to-40℃, there is a lack of comprehensive review to summarize the quantified performance of EDLCs when they are subjected to low-temperature environments. The rapid and growing demand for high-performance EDLCs for auxiliary power systems in the aeronautic and aerospace industries has triggered the urge to extend their operating temperature range,especially at temperatures below-40℃. This article presents an overview of EDLC’s performance and their challenges at extremely low temperatures including the capability of storing a considerable amount of electrical energy and maintaining long-term stability. The selection of electrolytes and electrode materials is crucial to the performance of EDLCs operating at a desired low-temperature range. Strategies to improve EDLC’s performance at extremely low temperatures are discussed, followed by the future perspectives to motivate more future studies to be conducted in this area.
文摘Terahertz waves, sitting in the gap between the middle infrared and millimeter wave regions, are known as the last vacant area of the electromagnetic spectrum that has not quite been understood and brought into applications. The Terahertz region has been the focus of research worldwide since early 1990s. Due to their unique characteristics, Terahertz technologies have a wide range of applications, such as hazard detection, high speed data communications, radio astronomy, and biomedical imaging.
文摘Inductively-coupled plasma mass spectrometry (ICP-MS) has made much progress since its birth in the late 1990s. This paper will give a rather systematic overview on the use of this technique in new devices and technologies related to plasma source, sample-introducing device and detecting spectrometer etc. In this overview, an emphasis will be put on the evaluation of the ICP- MS technique in combination with a series of physical, chemical and biological techniques, such as laser ablation (LA), capillary electrophoresis (CE) and high performance liquid chromatograph (HPLC), along with their representative high accuracy and high sensitivity. Finally, comprehensive and fruitful applications of the ICP-MS and its combinative techniques in the detection of trace metallic elements and isotopes in complex biological and environmental samples will be revealed.
基金Supported by National Natural Science Foundation of China(51991361,52074327)Major Engineering Technology Field Test Project of CNPC(2020F-45)。
文摘By summarizing the composition,classification,and performance characterization of functional adhesive materials,the adhesion mechanisms of functional adhesive materials,such as adsorption/surface reaction,diffusion,mechanical interlocking,and electrostatic adsorption,are expounded.The research status of these materials in oil and gas drilling and production engineering field such as lost circulation prevention/control,wellbore stabilization,hydraulic fracturing,and profile control and water plugging,and their application challenges and prospects in oil and gas drilling and production are introduced comprehensively.According to the applications of functional adhesive materials in the field of oil and gas drilling and production at this stage,the key research directions of functional adhesive materials in the area of oil and gas drilling and production are proposed:(1)blending and modifying thermoplastic resins or designing curable thermoplastic resins to improve the bonding performance and pressure bearing capacity of adhesive lost circulation materials;(2)introducing low-cost adhesive groups and positive charge structures into polymers to reduce the cost of wellbore strengthening agents and improve their adhesion performance on the wellbore;(3)introducing thermally reversible covalent bond into thermosetting resin to prevent backflow of proppant and improve the compressive strength of adhesive proppant;(4)introducing thermally reversible covalent bonds into thermoplastic polymers to improve the temperature resistance,salt-resistance and water shutoff performance of adhesive water shutoff agents.
文摘The rising cost and limited availability of fossil fuels, and the increasing concerns related to their role on global pollution and greenhouse effect have pushed considerably the need to accelerate the transition to a more sustainable use of energy based largely on renewable energy sources. Nanocarbon materials play a critical role in this transition, as they are the key materials for components of different devices necessary in enabling this transition (batteries, fuel cells, solar cells, etc.). This issue collects 22 contributions, including one perspective and six review papers on the topic of carbon materials for energy applications, written by well-known experts in this field. It is really an exciting special issue that gives a very updated view of this topic, as well as trends and outlooks in this breakthrough research area. The initial perspective paper introduces the different possibilities offered from the growing level of knowledge in this area, testified from the exponentially rising number of publications. It also discusses the basie concepts for a rational design of these nanomaterials. The lk)llowing six reviews address different specific aspects of synthesis, characterization and use of carbon nanomaterials, from fuel cells to composite electrodes, supercapacitors and photoelectrochemical devices for CO2 conversion. These reviews represent an unique opportunity for the readers to be updated on the latest developments of new carbon families such as fullerene, grapbene, and carbon nanotube, and their derived nanocarbon materials (from carbon quantum dots to nanohorn, nanofiber, nano ribbon, etc.). Second generation nanocarbons, including modification of these nanocarbons by surface functionalization or doping with heteroatoms to create specific tailored properties, and nanoarchitectured supramolecular hybrids, are also discussed. Finally, 1 communication and 14 full articles discuss several aspects of the use of these nanocarbon materials to develop new catalysts for a range of applications (from biomass conversion to Fisher-Tropsch reaction and electrochemical devices) and new materials for energy storage and conversion (adsorption pumps, Li-ion and Li-S batteries, electrodes for electrochemical uses). We thus believe that this special issue dedicated to the use and development of carbon materials for energy applications represents a unique occasion for young and experienced researchers as well as for managers in the field of sustainable energy to have an updated view on this enabling topic for the future of our society. We thus invite all to have this special issue as a privileged component of your bookshelf.
文摘Terahertz waves, sitting in the gap between the middle infrared and millimeter wave regions, are known as the last vacant area of the electromagnetic spectrum that has not quite been understood and brought into applications. The Terahertz region has been the focus of research worldwide since early 1990s. Due to their unique characteristics, Terahertz technologies have a wide range of applications, such as hazard detection, high speed data communications, radio astronomy, and biomedical imaging.
文摘Terahertz waves, sitting in the gap between the middle infrared and millimeter wave regions, are known as the last vacant area of the electromagnetic spectrum that has not quite been understood and brought into applications. The Terahertz region has been the focus of research worldwide since early 1990s. Due to their unique characteristics, Terahertz technologies have a wide range of applications, such as hazard detection, high speed data communications, radio astronomy, and biomedical imaging.
文摘Terahertz wave, sitting in the gap between middle infrared and millimeter wave, has been known as the last vacant area in spectrum that has not been quite understood and brought into applications. It has been the focus of research worldwide since early 1990s. Due to the unique characteristics of Terahertz wave, Terahertz technologies have a wide range of applications, such as hazard detection, high speed data communications, radio astronomy, biomedical imaging, etc.