Based on a variety of geometric observations for location of solutions, a general and unified region analysis framework for developing constructive solvability of nonlinear operator equations are proposed. Within this...Based on a variety of geometric observations for location of solutions, a general and unified region analysis framework for developing constructive solvability of nonlinear operator equations are proposed. Within this framework, the methods including interval, ball and ellipsoid methods can be studied in a unified way. The ball algorithm, as a typical example, is in particular analysed.展开更多
We focus on the localized characteristics of lump and interaction solutions to two extended Jimbo–Miwa equations.Based on the Hirota bilinear method and the test function method,we construct the exact solutions to th...We focus on the localized characteristics of lump and interaction solutions to two extended Jimbo–Miwa equations.Based on the Hirota bilinear method and the test function method,we construct the exact solutions to the extended equations including lump solutions,lump–kink solutions,and two other types of interaction solutions,by solving the underdetermined nonlinear system of algebraic equations for associated parameters.Finally,analysis and graphical simulation are presented to show the dynamical characteristics of our solutions and the interaction behaviors are revealed.展开更多
文摘Based on a variety of geometric observations for location of solutions, a general and unified region analysis framework for developing constructive solvability of nonlinear operator equations are proposed. Within this framework, the methods including interval, ball and ellipsoid methods can be studied in a unified way. The ball algorithm, as a typical example, is in particular analysed.
基金Project supported by the Fundamental Research Funds for the Central Universities of China(Grant No.2018RC031)the National Natural Science Foundation of China(Grant No.71971015)+1 种基金the Program of the Co-Construction with Beijing Municipal Commission of Education of China(Grant Nos.B19H100010and B18H100040)the Open Fund of IPOC(BUPT)。
文摘We focus on the localized characteristics of lump and interaction solutions to two extended Jimbo–Miwa equations.Based on the Hirota bilinear method and the test function method,we construct the exact solutions to the extended equations including lump solutions,lump–kink solutions,and two other types of interaction solutions,by solving the underdetermined nonlinear system of algebraic equations for associated parameters.Finally,analysis and graphical simulation are presented to show the dynamical characteristics of our solutions and the interaction behaviors are revealed.