The failure criterion of rocks is a critical factor involved in reliability design and stability analysis of geotechnical engineering.In order to accurately evaluate the triaxial compressive strength of rocks under di...The failure criterion of rocks is a critical factor involved in reliability design and stability analysis of geotechnical engineering.In order to accurately evaluate the triaxial compressive strength of rocks under different confining pressures,a nonlinear empirical strength criterion based on Mohr-Coulomb criterion was proposed in this paper.Through the analysis of triaxial test strength of 11 types of rock materials,the feasibility and validity of proposed criterion was discussed.For a further verification,six typical strength criteria were selected,and the prediction results of each criterion and test results were statistically analyzed.The comparative comparison results show that the prediction results obtained by applying this new criterion to 97 conventional triaxial compression tests of 11 different rock materials are highly consistent with the experimental data.Statistical analysis was executed to assess the application of the new criterion and other classical criteria in predicting the failure behavior of rock.This proposed empirical criterion provides a new reference and method for the determination of triaxial compressive strength of rock materials.展开更多
It is of great significance for safety reason to obtain the triaxial compressive properties of cemented tailings backfill(CTB).The influence of cement content,curing age and confining pressure on strength and deformat...It is of great significance for safety reason to obtain the triaxial compressive properties of cemented tailings backfill(CTB).The influence of cement content,curing age and confining pressure on strength and deformation properties of CTB was examined and discussed.Results indicate that the triaxial compressive and deformation behavior of CTB is strongly affected by the cement content,curing age and confining pressure.The increase in cement content,curing age and confining pressure leads to a change in stress−strain behavior and an increase in the axial strain at failure and post-peak strength loss.The cohesion of CTB rises as the curing age and cement content increase.However,the enhancement in internal friction angle is trivial and negligible.It should be noted that the failure pattern of CTB samples in triaxial compression is mainly along a shear plane,the confining pressure restrains the lateral expansion and the bulging failure pattern is dominantly detected in CTB samples as curing age length and cement content increase.The results will help to better understand the triaxial mechanical and deformation behavior of CTB.展开更多
Plate shaped sandstones containing two fabricated circular holes that were filled with gypsum and high-strength concrete respectively were prepared for studying the effects of ligament length L ligament incline angle ...Plate shaped sandstones containing two fabricated circular holes that were filled with gypsum and high-strength concrete respectively were prepared for studying the effects of ligament length L ligament incline angle α, as well as filling modes on their strength properties and failure modes. The results show that the initial cracks can be categorized as wing crack, axial tensile crack and curved tensile crack. The failure modes of ligaments can be categorized as mode of single inclined crack, mode of single axial crack and mode of two parallel cracks. The final failure modes of all specimens can be categorized as the tension-shear mixed failure and shear failure. The strength of inclusions shows little influence on the final failure modes of specimens, while the failure modes vary with L and α. When α is a fixed value, the peak strength σc and elastic modulus Ec of tested specimens increase firstly with increasing L and reaches to the maximum value at L of 16 mm, then declines. When L is a fixed value, σc declines firstly and then turns to increase as α increases to 75° from 45°, while Ec increases linearly. The axial stress σp performs the similar variation trends with those of σc versus increasing L and α when ligaments fail.展开更多
A series of triaxial compression tests for frozen clay were performed by KoDCGF (freezing with non-uniform temperature under loading after K0 consolidation) method and GFC (freezing with non-uniform temperature wit...A series of triaxial compression tests for frozen clay were performed by KoDCGF (freezing with non-uniform temperature under loading after K0 consolidation) method and GFC (freezing with non-uniform temperature without experiencing Ko consolidation) method at various confining pressures and thermal gradients. The experimental results indicate that the triaxial compression strength for frozen clay in KoDCGF test increases with the increase of confining pressure, but it decreases as the confining pressure increases further in GFC test. In other words, the compression strength for frozen clay with identical confining pressure decreases with the increase in thermal gradient both in KoDCGF test and GFC test. The strength of frozen clay in KoDCGF test is dependent of pore ice strength, soil particle strength and interaction between soil skeleton and pore ice. The decrease of water content and distance between soil particles leads to the decrease of pore size and the increase of contact area between particles in KoDCGF test, which further results in a higher compression strength than that in GFC test. The compression strength for frozen clay with thermal gradient can be descried by strength for frozen clay with a uniform temperature identical to the temperature at the height of specimen where the maximum tensile stress appears.展开更多
Ballistic impact induces complex stress states on fiber-based armor systems.During impact fibers undergo multiaxial loading which includes axial tension,axial compression,transverse compression,and transverse shear.Tr...Ballistic impact induces complex stress states on fiber-based armor systems.During impact fibers undergo multiaxial loading which includes axial tension,axial compression,transverse compression,and transverse shear.Transverse co mpression induced by the projectile leads to permanent defo rmation and fibrillation of fibers resulting in degradation of material tensile strength.Previous work(Sockalingam et al.Textile Res.J 2018) has shown a reduction of 20% in the tensile strength of Dyneema~? SK76 single fibers subjectet to 77% nominal transverse compressive strains.Experimental investigation of quasistatic transverse compression on Dyneema~? SK-76 yarns,unconstrained in the lateral direction,indicate an average of 4% reduction in tensile strength of yarns compressed to 77% nominal strains.In this work we use finite element modeling techniques to understand the difference in residual tensile strength between single fibers and yarns observed in laterally unconstrained transverse compression experiments.Finite element study of the transverse compression response of single fibers and yarns indicate that local strains developed in fibers within the yarn are much lower than the local strains developed in single fibers subjected to a given nominal strain and may explain the less reduction in strength observed in yarns.展开更多
The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compr...The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compression.While previous studies focused on the angleβbetween the maximum principal stress and the structural plane,the role of angleω,between the intermediate principal stress and the structural plane,is often overlooked.Utilizing artificially prefabricated granite specimens with a single non-penetrating structural plane,we set the loading angleβto range from 0°to 90°across seven groups,and assignedωvalues of 0°and 90°in two separate groups.The results show that the peak strength is negatively correlated withβup to 45°,beyond which it tends to stabilize.The angleωexerts a strengthening effect on the peak strength.Deformation mainly occurs post-peak,with the strain values ε_(1) and ε_(3) reaching levels 2−3 times higher than those in intact rock.The structural plane significantly influences failure mode whenω=0°,while failure localizes near the σ_(3) surface of the specimens whenω=90°.The findings enhance data on structural plane rocks under triaxial compression and inform theoretical research,excavation,and support design of rock structures.展开更多
Traditional mechanical rock breaking method is labor-intensive and low-efficient,which restrictes the development of deep resources and deep space.As a new rock-breakage technology,microwave irradiation is expected to...Traditional mechanical rock breaking method is labor-intensive and low-efficient,which restrictes the development of deep resources and deep space.As a new rock-breakage technology,microwave irradiation is expected to overcome these problems.This study examines the failure characteristics,weakening law,and breakdown mechanism of deep sandstone(depth=1050 m)samples in a microwave field.The macroscopic and microscopic properties were determined via mechanical tests,mesoscopic tests,and numerical simulations.Microwave application at 1000 W for 60 s reduced the uniaxial compressive strength of the sandstone by 50%.Thermal stress of the sandstone was enhanced by uneven expansion of minerals at the microscale.Moreover,the melting of some minerals in the high-temperature environment changed the pore structure,sharply reducing the macroscopic strength.The temperature remained high in the lower midsection of the sample,and the stress was concentrated at the bottom of the sample and along its axis.These results are expected to improve the efficiency of deep rock breaking,provide theoretical and technical support for similar rock-breakage projects,and accelerate advances in deep-Earth science.展开更多
The mechanical behavior of plastic concrete used in the cut-off walls of earth dams has been studied. Triaxial compression tests on the specimens in various ages and mix designs under different confining pressures hav...The mechanical behavior of plastic concrete used in the cut-off walls of earth dams has been studied. Triaxial compression tests on the specimens in various ages and mix designs under different confining pressures have been done and the stress-strain behavior of such materials and their strength parameter changes have been experimentally investigated. It has been observed that increasing the confining pressures applied on the specimens causes the material behavior to be alike the more ductile materials and the compressive strength increases considerably as well. Moreover, a parametric study has been carded out to investigate the influence of essential parameters on the shear strength parameters of these materials. According to the research, increasing the coarse to fine aggregates ratio leads to the increase of compressive strength of the specimens as well as the increase of the cohesion and internal friction angle of the materials. Furthermore, the bentonite content decrease and the cement factor increase result in an increase of the cohesion parameter of plastic concretes and decrease of the internal friction angle of such materials.展开更多
Traditional soil additives like Portland cement and lime are prone to cause the brittle fracture behavior of soil,and possibly,environmental impacts.This study explores the potential use of polyurethane organic polyme...Traditional soil additives like Portland cement and lime are prone to cause the brittle fracture behavior of soil,and possibly,environmental impacts.This study explores the potential use of polyurethane organic polymer and sisal fiber in improving the mechanical performance of sand.The effects of polymer content,fiber content,and dry density on the unconfined compressive strength(UCS)and direct tensile strength(DTS)of the polymer-fiber-sand composite were evaluated.The results showed significant increase in UCS and DTS of the reinforced sand with the increase of polymer content,fiber content,and dry density.At high dry density condition,a single peaked stress−strain curve is often observed.Higher polymer content is beneficial to increasing the peak stress,while higher fiber content contributes more to the post-peak stress.The combined use of polymers and fibers in soil reinforcement effectively prevents the propagation and development of cracks under the stress.Scanning electron microscopy(SEM)test was also performed to investigate the micro-structural changes and inter-particle relations.It was found through SEM images that the surface coating,bonding,and filling effects conferred by polymer matrix greatly enhance the interfacial interactions,and hence provide a cohesive environment where the strength of fibers could be readily mobilized.展开更多
The approximate compressible model is adopted to study the effects of strength and compressibility on the penetration by WHA long rod and copper jet into semi-infinite target in detail. For WHA rod penetrating PMMA at...The approximate compressible model is adopted to study the effects of strength and compressibility on the penetration by WHA long rod and copper jet into semi-infinite target in detail. For WHA rod penetrating PMMA at 2 km/s <V <5 km/s, the compressibility has a significant effect on the penetration efficiency. We clarify how compressibility affects the penetration efficiency by changing the stagnation pressures of the rod and target. For WHA rod penetrating 4340 Steel and 6061-T6 Al at 2 km/s < V < 10 km/s, the effect of strength is strong and the effect of compressibility is negligible at lower impact velocity, whilst the effect of strength is weak and the effect of compressibility becomes stronger at higher impact velocity. For the copper jet penetrating 4030 Steel, 6061-T6 Al and PMMA. the virtual origin model is adopted, and the compressibility and strength are implicitly considered by the linear relation between the penetration velocity and impact velocity. The effects of compressibility and target resistance on penetration efficiency are studied. The results show that the target resistance has a significant effect on the penetration efficiency. Howver PMMA is much more compressible than copper and the huge difference of compressibility has a significant effect on the penetration by hypervelocity copper jet into PMMA.展开更多
Through unconfined compressive strength test,influencing factors on compressive strength of solidified inshore saline soil with SH lime-ash,ratio of lime-ash(1-K),quantity of lime-ash,age,degree of compression and sal...Through unconfined compressive strength test,influencing factors on compressive strength of solidified inshore saline soil with SH lime-ash,ratio of lime-ash(1-K),quantity of lime-ash,age,degree of compression and salt content were studied.The results show that because inshore saline soil has special engineering characteristic,more influencing factors must be considered compared with ordinary soil for the perfect effect of solidifying.展开更多
A series of compression tests were conducted on 150 groups of cement paste specimens with side lengths ranging from 40 mm to 200 mm. The specimens include cube specimens and prism specimens with height to width ratio ...A series of compression tests were conducted on 150 groups of cement paste specimens with side lengths ranging from 40 mm to 200 mm. The specimens include cube specimens and prism specimens with height to width ratio of 2. The experiment results show that size effect exists in the cubic compressive strength and prismatic compressive strength of the cement paste, and larger specimens resist less in terms of strength than smaller ones. The cubic compressive strength and the prismatic compressive strength of the specimens with side length of 200 mm are respectively about 91% and 89% of the compressive strength of the specimens with the side length of 40 mm. Water to binder ratio has a significant influence on the size effect of the compressive strengths of the cement paste. With a decrease in the water to binder ratio, the size effect is significantly enhanced. When the water to binder ratio is 0.2, the size effects of the cubic compressive strength and the prismatic compressive strength of the cement paste are 1.6 and 1.4 times stronger than those of a water to binder ratio of 0.6. Furthermore, a series of formulas are proposed to calculate the size effect of the cubic compressive strength and the prismatic compressive strength of cement paste, and the results of the size effect predicted by the formulas are in good agreement with the experiment results.展开更多
In order to investigate the compressibility, particularly the secondary compression behaviour, soil structure and undrained shear strength of Shanghai Clay, a series of one-dimensional consolidation tests (some up to...In order to investigate the compressibility, particularly the secondary compression behaviour, soil structure and undrained shear strength of Shanghai Clay, a series of one-dimensional consolidation tests (some up to 70 d) and undrained triaxial tests on high-quality intact and reconstituted soil specimens were carried out. Shanghai Clay is a lightly overconsolidated soil (OCR=1.2-1.3) with true cohesion or bonding. Due to the influence of soil structures, the secondary compression index Ca varies significantly with consolidation stress and the maximum value of C~ occurs in the vicinity of preconsolidation stress. Measured coefficients of secondary compression generally fall in the range of 0.2%-0.8% based on which Shanghai Clay can be classified as a soil with low to medium secondary compressibility. The effect of soil structures on the compressibility of Shanghai Clay is found to reduce with an increase in depth. Soil structure has an important influence on initial soil stiffness, but does not appear to affect undrained shear strength significantly. Undrained shear strengths of intact Shanghai Clay from compression tests are approximately 20% higher than those from extension tests.展开更多
基金Project(51774322)supported by the National Natural Science Foundation of ChinaProject(2018JJ2500)supported by Natural Science Foundation of Hunan Province,China+1 种基金Project(2020JGB135)supported by Degree and Postgraduate Education Reform Project of Central South University,ChinaProject(2018zzts209)supported by the Fundamental Research Funds for the Central Universities,China。
文摘The failure criterion of rocks is a critical factor involved in reliability design and stability analysis of geotechnical engineering.In order to accurately evaluate the triaxial compressive strength of rocks under different confining pressures,a nonlinear empirical strength criterion based on Mohr-Coulomb criterion was proposed in this paper.Through the analysis of triaxial test strength of 11 types of rock materials,the feasibility and validity of proposed criterion was discussed.For a further verification,six typical strength criteria were selected,and the prediction results of each criterion and test results were statistically analyzed.The comparative comparison results show that the prediction results obtained by applying this new criterion to 97 conventional triaxial compression tests of 11 different rock materials are highly consistent with the experimental data.Statistical analysis was executed to assess the application of the new criterion and other classical criteria in predicting the failure behavior of rock.This proposed empirical criterion provides a new reference and method for the determination of triaxial compressive strength of rock materials.
基金Projects(2018YFC0808403,2018YFE0123000)supported by the National Key Technologies Research&Development Program of ChinaProject(800015Z1185)supported by the Yueqi Young Scholar Project,ChinaProject(2020YJSNY04)supported by the Fundamental Research Funds for the Central Universities,China。
文摘It is of great significance for safety reason to obtain the triaxial compressive properties of cemented tailings backfill(CTB).The influence of cement content,curing age and confining pressure on strength and deformation properties of CTB was examined and discussed.Results indicate that the triaxial compressive and deformation behavior of CTB is strongly affected by the cement content,curing age and confining pressure.The increase in cement content,curing age and confining pressure leads to a change in stress−strain behavior and an increase in the axial strain at failure and post-peak strength loss.The cohesion of CTB rises as the curing age and cement content increase.However,the enhancement in internal friction angle is trivial and negligible.It should be noted that the failure pattern of CTB samples in triaxial compression is mainly along a shear plane,the confining pressure restrains the lateral expansion and the bulging failure pattern is dominantly detected in CTB samples as curing age length and cement content increase.The results will help to better understand the triaxial mechanical and deformation behavior of CTB.
基金Project(2017YFC0603001)supported by the High-tech Research and Development Program of ChinaProject(51374198)supported by the National Natural Science Foundation of China
文摘Plate shaped sandstones containing two fabricated circular holes that were filled with gypsum and high-strength concrete respectively were prepared for studying the effects of ligament length L ligament incline angle α, as well as filling modes on their strength properties and failure modes. The results show that the initial cracks can be categorized as wing crack, axial tensile crack and curved tensile crack. The failure modes of ligaments can be categorized as mode of single inclined crack, mode of single axial crack and mode of two parallel cracks. The final failure modes of all specimens can be categorized as the tension-shear mixed failure and shear failure. The strength of inclusions shows little influence on the final failure modes of specimens, while the failure modes vary with L and α. When α is a fixed value, the peak strength σc and elastic modulus Ec of tested specimens increase firstly with increasing L and reaches to the maximum value at L of 16 mm, then declines. When L is a fixed value, σc declines firstly and then turns to increase as α increases to 75° from 45°, while Ec increases linearly. The axial stress σp performs the similar variation trends with those of σc versus increasing L and α when ligaments fail.
基金Project(50534040) supported by the National Natural Science Foundation of ChinaProject(20110491489) supported by China Postdoctoral Science FoundationProject(2011QNA03) supported by Fundamental Research Funds for the Central Universities of China
文摘A series of triaxial compression tests for frozen clay were performed by KoDCGF (freezing with non-uniform temperature under loading after K0 consolidation) method and GFC (freezing with non-uniform temperature without experiencing Ko consolidation) method at various confining pressures and thermal gradients. The experimental results indicate that the triaxial compression strength for frozen clay in KoDCGF test increases with the increase of confining pressure, but it decreases as the confining pressure increases further in GFC test. In other words, the compression strength for frozen clay with identical confining pressure decreases with the increase in thermal gradient both in KoDCGF test and GFC test. The strength of frozen clay in KoDCGF test is dependent of pore ice strength, soil particle strength and interaction between soil skeleton and pore ice. The decrease of water content and distance between soil particles leads to the decrease of pore size and the increase of contact area between particles in KoDCGF test, which further results in a higher compression strength than that in GFC test. The compression strength for frozen clay with thermal gradient can be descried by strength for frozen clay with a uniform temperature identical to the temperature at the height of specimen where the maximum tensile stress appears.
基金the startup funding provided by the University of South Carolina。
文摘Ballistic impact induces complex stress states on fiber-based armor systems.During impact fibers undergo multiaxial loading which includes axial tension,axial compression,transverse compression,and transverse shear.Transverse co mpression induced by the projectile leads to permanent defo rmation and fibrillation of fibers resulting in degradation of material tensile strength.Previous work(Sockalingam et al.Textile Res.J 2018) has shown a reduction of 20% in the tensile strength of Dyneema~? SK76 single fibers subjectet to 77% nominal transverse compressive strains.Experimental investigation of quasistatic transverse compression on Dyneema~? SK-76 yarns,unconstrained in the lateral direction,indicate an average of 4% reduction in tensile strength of yarns compressed to 77% nominal strains.In this work we use finite element modeling techniques to understand the difference in residual tensile strength between single fibers and yarns observed in laterally unconstrained transverse compression experiments.Finite element study of the transverse compression response of single fibers and yarns indicate that local strains developed in fibers within the yarn are much lower than the local strains developed in single fibers subjected to a given nominal strain and may explain the less reduction in strength observed in yarns.
基金Projects(51979268,52279117,52309146)supported by the National Natural Science Foundation of ChinaProject(SKLGME-JBGS2401)supported by the Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,China。
文摘The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compression.While previous studies focused on the angleβbetween the maximum principal stress and the structural plane,the role of angleω,between the intermediate principal stress and the structural plane,is often overlooked.Utilizing artificially prefabricated granite specimens with a single non-penetrating structural plane,we set the loading angleβto range from 0°to 90°across seven groups,and assignedωvalues of 0°and 90°in two separate groups.The results show that the peak strength is negatively correlated withβup to 45°,beyond which it tends to stabilize.The angleωexerts a strengthening effect on the peak strength.Deformation mainly occurs post-peak,with the strain values ε_(1) and ε_(3) reaching levels 2−3 times higher than those in intact rock.The structural plane significantly influences failure mode whenω=0°,while failure localizes near the σ_(3) surface of the specimens whenω=90°.The findings enhance data on structural plane rocks under triaxial compression and inform theoretical research,excavation,and support design of rock structures.
基金Projects(51822403,51827901)supported by the National Natural Science Foundation of ChinaProject(2018HH0159)supported by the Sichuan International Technological Innovation Cooperation,China。
文摘Traditional mechanical rock breaking method is labor-intensive and low-efficient,which restrictes the development of deep resources and deep space.As a new rock-breakage technology,microwave irradiation is expected to overcome these problems.This study examines the failure characteristics,weakening law,and breakdown mechanism of deep sandstone(depth=1050 m)samples in a microwave field.The macroscopic and microscopic properties were determined via mechanical tests,mesoscopic tests,and numerical simulations.Microwave application at 1000 W for 60 s reduced the uniaxial compressive strength of the sandstone by 50%.Thermal stress of the sandstone was enhanced by uneven expansion of minerals at the microscale.Moreover,the melting of some minerals in the high-temperature environment changed the pore structure,sharply reducing the macroscopic strength.The temperature remained high in the lower midsection of the sample,and the stress was concentrated at the bottom of the sample and along its axis.These results are expected to improve the efficiency of deep rock breaking,provide theoretical and technical support for similar rock-breakage projects,and accelerate advances in deep-Earth science.
文摘The mechanical behavior of plastic concrete used in the cut-off walls of earth dams has been studied. Triaxial compression tests on the specimens in various ages and mix designs under different confining pressures have been done and the stress-strain behavior of such materials and their strength parameter changes have been experimentally investigated. It has been observed that increasing the confining pressures applied on the specimens causes the material behavior to be alike the more ductile materials and the compressive strength increases considerably as well. Moreover, a parametric study has been carded out to investigate the influence of essential parameters on the shear strength parameters of these materials. According to the research, increasing the coarse to fine aggregates ratio leads to the increase of compressive strength of the specimens as well as the increase of the cohesion and internal friction angle of the materials. Furthermore, the bentonite content decrease and the cement factor increase result in an increase of the cohesion parameter of plastic concretes and decrease of the internal friction angle of such materials.
基金Project(41877212)supported by the National Natural Science Foundation of ChinaProject(2017010)supported by the Water Conservancy Science and Technology Project of Jiangsu Province,ChinaProject(B200202013)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Traditional soil additives like Portland cement and lime are prone to cause the brittle fracture behavior of soil,and possibly,environmental impacts.This study explores the potential use of polyurethane organic polymer and sisal fiber in improving the mechanical performance of sand.The effects of polymer content,fiber content,and dry density on the unconfined compressive strength(UCS)and direct tensile strength(DTS)of the polymer-fiber-sand composite were evaluated.The results showed significant increase in UCS and DTS of the reinforced sand with the increase of polymer content,fiber content,and dry density.At high dry density condition,a single peaked stress−strain curve is often observed.Higher polymer content is beneficial to increasing the peak stress,while higher fiber content contributes more to the post-peak stress.The combined use of polymers and fibers in soil reinforcement effectively prevents the propagation and development of cracks under the stress.Scanning electron microscopy(SEM)test was also performed to investigate the micro-structural changes and inter-particle relations.It was found through SEM images that the surface coating,bonding,and filling effects conferred by polymer matrix greatly enhance the interfacial interactions,and hence provide a cohesive environment where the strength of fibers could be readily mobilized.
基金supported by the National Outstanding Young Scientist Foundation of China(11225213)the Key Subject “Computational solid mechanics” of China Academy of Engineering Physics
文摘The approximate compressible model is adopted to study the effects of strength and compressibility on the penetration by WHA long rod and copper jet into semi-infinite target in detail. For WHA rod penetrating PMMA at 2 km/s <V <5 km/s, the compressibility has a significant effect on the penetration efficiency. We clarify how compressibility affects the penetration efficiency by changing the stagnation pressures of the rod and target. For WHA rod penetrating 4340 Steel and 6061-T6 Al at 2 km/s < V < 10 km/s, the effect of strength is strong and the effect of compressibility is negligible at lower impact velocity, whilst the effect of strength is weak and the effect of compressibility becomes stronger at higher impact velocity. For the copper jet penetrating 4030 Steel, 6061-T6 Al and PMMA. the virtual origin model is adopted, and the compressibility and strength are implicitly considered by the linear relation between the penetration velocity and impact velocity. The effects of compressibility and target resistance on penetration efficiency are studied. The results show that the target resistance has a significant effect on the penetration efficiency. Howver PMMA is much more compressible than copper and the huge difference of compressibility has a significant effect on the penetration by hypervelocity copper jet into PMMA.
基金Project(05YFSYSF00300) supported by the Natural Science Foundation of Tianjin
文摘Through unconfined compressive strength test,influencing factors on compressive strength of solidified inshore saline soil with SH lime-ash,ratio of lime-ash(1-K),quantity of lime-ash,age,degree of compression and salt content were studied.The results show that because inshore saline soil has special engineering characteristic,more influencing factors must be considered compared with ordinary soil for the perfect effect of solidifying.
基金Project(51408213)supported by the National Natural Science Foundation of China
文摘A series of compression tests were conducted on 150 groups of cement paste specimens with side lengths ranging from 40 mm to 200 mm. The specimens include cube specimens and prism specimens with height to width ratio of 2. The experiment results show that size effect exists in the cubic compressive strength and prismatic compressive strength of the cement paste, and larger specimens resist less in terms of strength than smaller ones. The cubic compressive strength and the prismatic compressive strength of the specimens with side length of 200 mm are respectively about 91% and 89% of the compressive strength of the specimens with the side length of 40 mm. Water to binder ratio has a significant influence on the size effect of the compressive strengths of the cement paste. With a decrease in the water to binder ratio, the size effect is significantly enhanced. When the water to binder ratio is 0.2, the size effects of the cubic compressive strength and the prismatic compressive strength of the cement paste are 1.6 and 1.4 times stronger than those of a water to binder ratio of 0.6. Furthermore, a series of formulas are proposed to calculate the size effect of the cubic compressive strength and the prismatic compressive strength of cement paste, and the results of the size effect predicted by the formulas are in good agreement with the experiment results.
基金Project(GRF618006) supported by the Research Grants Council of the Hong Kong Special Administrative Region, China
文摘In order to investigate the compressibility, particularly the secondary compression behaviour, soil structure and undrained shear strength of Shanghai Clay, a series of one-dimensional consolidation tests (some up to 70 d) and undrained triaxial tests on high-quality intact and reconstituted soil specimens were carried out. Shanghai Clay is a lightly overconsolidated soil (OCR=1.2-1.3) with true cohesion or bonding. Due to the influence of soil structures, the secondary compression index Ca varies significantly with consolidation stress and the maximum value of C~ occurs in the vicinity of preconsolidation stress. Measured coefficients of secondary compression generally fall in the range of 0.2%-0.8% based on which Shanghai Clay can be classified as a soil with low to medium secondary compressibility. The effect of soil structures on the compressibility of Shanghai Clay is found to reduce with an increase in depth. Soil structure has an important influence on initial soil stiffness, but does not appear to affect undrained shear strength significantly. Undrained shear strengths of intact Shanghai Clay from compression tests are approximately 20% higher than those from extension tests.