Accurate modeling and parameter estimation of sea clutter are fundamental for effective sea surface target detection.With the improvement of radar resolution,sea clutter exhibits a pronounced heavy-tailed characterist...Accurate modeling and parameter estimation of sea clutter are fundamental for effective sea surface target detection.With the improvement of radar resolution,sea clutter exhibits a pronounced heavy-tailed characteristic,rendering traditional distribution models and parameter estimation methods less effective.To address this,this paper proposes a dual compound-Gaussian model with inverse Gaussian texture(CG-IG)distribution model and combines it with an improved Adam algorithm to introduce a method for parameter correction.This method effectively fits sea clutter with heavy-tailed characteristics.Experiments with real measured sea clutter data show that the dual CGIG distribution model,after parameter correction,accurately describes the heavy-tailed phenomenon in sea clutter amplitude distribution,and the overall mean square error of the distribution is reduced.展开更多
This paper focuses on the adaptive detection of range and Doppler dual-spread targets in non-homogeneous and nonGaussian sea clutter.The sea clutter from two polarimetric channels is modeled as a compound-Gaussian mod...This paper focuses on the adaptive detection of range and Doppler dual-spread targets in non-homogeneous and nonGaussian sea clutter.The sea clutter from two polarimetric channels is modeled as a compound-Gaussian model with different parameters,and the target is modeled as a subspace rangespread target model.The persymmetric structure is used to model the clutter covariance matrix,in order to reduce the reliance on secondary data of the designed detectors.Three adaptive polarimetric persymmetric detectors are designed based on the generalized likelihood ratio test(GLRT),Rao test,and Wald test.All the proposed detectors have constant falsealarm rate property with respect to the clutter texture,the speckle covariance matrix.Experimental results on simulated and measured data show that three adaptive detectors outperform the competitors in different clutter environments,and the proposed GLRT detector has the best detection performance under different parameters.展开更多
This paper considers the problem of sea clutter sup-pression.We propose the cuttable encoder-decoder-augmenta-tion network(CEDAN)to improve clutter suppression perfor-mance by enriching the contrast information betwee...This paper considers the problem of sea clutter sup-pression.We propose the cuttable encoder-decoder-augmenta-tion network(CEDAN)to improve clutter suppression perfor-mance by enriching the contrast information between the target and clutter.Specifically,the plug-and-play residual U-block(ResUblock)is proposed to augment the feature representation ability of the clutter suppression model.The CEDAN first extracts and fuses the multi-scale features using the encoder and the decoder composed of the ResUblocks.Then,the fused features are processed by the contrast information augmenta-tion module(CIAM)to enhance the diversity of target and clutter,resulting in encouraging sea clutter suppression results.In addi-tion,we propose the result-consistency loss to further improve the suppression performance.The result-consistency loss enables CEDAN to cut some blocks of decoder and CIAM to reduce the inference time without significantly degrading the suppression performance.Experimental results on measured and simulated data show that the CEDAN outperforms state-of-the-art sea clutter suppression methods in sea clutter suppres-sion performance and computation efficiency.展开更多
The detection performance and the constant false alarm rate behavior of the conventional adaptive detectors are severely degraded in heterogeneous clutter. This paper designs and analyses a knowledge-based (KB) adap...The detection performance and the constant false alarm rate behavior of the conventional adaptive detectors are severely degraded in heterogeneous clutter. This paper designs and analyses a knowledge-based (KB) adaptive polarimetric detector in het-erogeneous clutter. The proposed detection scheme is composed of a data selector using polarization knowledge and an adaptive polarization detector using training data. A polarization data selector based on the maximum likelihood estimation is proposed to remove outliers from the heterogeneous training data. This selector can remove outliers effectively, thus the training data is purified for estimating the clutter covariance matrix. Consequently, the performance of the adaptive detector is improved. We assess the performance of the KB adaptive polarimetric detector and the adaptive polarimetric detector without a data selector using simulated data and IPIX radar data. The results show that the KB adaptive polarization detector outperforms its non-KB counterparts.展开更多
针对高频地波雷达(High frequency surface wave radar,HFSWR)在探测中产生的回波数据,传统的人工识别和分类方法存在工作量大、效率低和主观性强等问题,本研究在分析一阶海杂波、电离层杂波和射频干扰的回波数据特性的基础上,创新性地...针对高频地波雷达(High frequency surface wave radar,HFSWR)在探测中产生的回波数据,传统的人工识别和分类方法存在工作量大、效率低和主观性强等问题,本研究在分析一阶海杂波、电离层杂波和射频干扰的回波数据特性的基础上,创新性地提出了基于YOLOv5识别模型的HFSWR杂波和干扰识别分类方法。该方法旨在帮助研究人员在海量实验数据中快速筛选出符合其科学研究需求的数据集,从而提高研究效率和数据准确性。在具体实施过程中,通过采用批量实测距离-多普勒(Range-Doppler,RD)谱数据对所提出模型进行训练和分析,使该方法能够在频域范围内对杂波和干扰进行有效识别。本研究以该识别分类算法为核心,进一步基于Python语言设计了一款地波雷达智能杂波和干扰识别分类软件。经过严格的批量实测数据测试验证,该软件能够满足设计需求,具有良好的可靠性,极大地提高了研究人员筛选有效实测数据的工作效率,为科学研究工作提供了有力的技术支撑。展开更多
文摘Accurate modeling and parameter estimation of sea clutter are fundamental for effective sea surface target detection.With the improvement of radar resolution,sea clutter exhibits a pronounced heavy-tailed characteristic,rendering traditional distribution models and parameter estimation methods less effective.To address this,this paper proposes a dual compound-Gaussian model with inverse Gaussian texture(CG-IG)distribution model and combines it with an improved Adam algorithm to introduce a method for parameter correction.This method effectively fits sea clutter with heavy-tailed characteristics.Experiments with real measured sea clutter data show that the dual CGIG distribution model,after parameter correction,accurately describes the heavy-tailed phenomenon in sea clutter amplitude distribution,and the overall mean square error of the distribution is reduced.
基金supported by the National Natural Science Foundation of China(62371382,62071346)the Science,Technology&Innovation Project of Xiong’an New Area(2022XAGG0181)the Special Funds for Creative Research(2022C61540)。
文摘This paper focuses on the adaptive detection of range and Doppler dual-spread targets in non-homogeneous and nonGaussian sea clutter.The sea clutter from two polarimetric channels is modeled as a compound-Gaussian model with different parameters,and the target is modeled as a subspace rangespread target model.The persymmetric structure is used to model the clutter covariance matrix,in order to reduce the reliance on secondary data of the designed detectors.Three adaptive polarimetric persymmetric detectors are designed based on the generalized likelihood ratio test(GLRT),Rao test,and Wald test.All the proposed detectors have constant falsealarm rate property with respect to the clutter texture,the speckle covariance matrix.Experimental results on simulated and measured data show that three adaptive detectors outperform the competitors in different clutter environments,and the proposed GLRT detector has the best detection performance under different parameters.
基金supported by the National Natural Science Foundation of China(62271126).
文摘This paper considers the problem of sea clutter sup-pression.We propose the cuttable encoder-decoder-augmenta-tion network(CEDAN)to improve clutter suppression perfor-mance by enriching the contrast information between the target and clutter.Specifically,the plug-and-play residual U-block(ResUblock)is proposed to augment the feature representation ability of the clutter suppression model.The CEDAN first extracts and fuses the multi-scale features using the encoder and the decoder composed of the ResUblocks.Then,the fused features are processed by the contrast information augmenta-tion module(CIAM)to enhance the diversity of target and clutter,resulting in encouraging sea clutter suppression results.In addi-tion,we propose the result-consistency loss to further improve the suppression performance.The result-consistency loss enables CEDAN to cut some blocks of decoder and CIAM to reduce the inference time without significantly degrading the suppression performance.Experimental results on measured and simulated data show that the CEDAN outperforms state-of-the-art sea clutter suppression methods in sea clutter suppres-sion performance and computation efficiency.
基金supported by the National Natural Science Foundation of China(61371181)the Shandong Provincial Natural Science Foundation(ZR2012FQ007)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(HIT.NSRIF.2011118)
文摘The detection performance and the constant false alarm rate behavior of the conventional adaptive detectors are severely degraded in heterogeneous clutter. This paper designs and analyses a knowledge-based (KB) adaptive polarimetric detector in het-erogeneous clutter. The proposed detection scheme is composed of a data selector using polarization knowledge and an adaptive polarization detector using training data. A polarization data selector based on the maximum likelihood estimation is proposed to remove outliers from the heterogeneous training data. This selector can remove outliers effectively, thus the training data is purified for estimating the clutter covariance matrix. Consequently, the performance of the adaptive detector is improved. We assess the performance of the KB adaptive polarimetric detector and the adaptive polarimetric detector without a data selector using simulated data and IPIX radar data. The results show that the KB adaptive polarization detector outperforms its non-KB counterparts.
文摘针对高频地波雷达(High frequency surface wave radar,HFSWR)在探测中产生的回波数据,传统的人工识别和分类方法存在工作量大、效率低和主观性强等问题,本研究在分析一阶海杂波、电离层杂波和射频干扰的回波数据特性的基础上,创新性地提出了基于YOLOv5识别模型的HFSWR杂波和干扰识别分类方法。该方法旨在帮助研究人员在海量实验数据中快速筛选出符合其科学研究需求的数据集,从而提高研究效率和数据准确性。在具体实施过程中,通过采用批量实测距离-多普勒(Range-Doppler,RD)谱数据对所提出模型进行训练和分析,使该方法能够在频域范围内对杂波和干扰进行有效识别。本研究以该识别分类算法为核心,进一步基于Python语言设计了一款地波雷达智能杂波和干扰识别分类软件。经过严格的批量实测数据测试验证,该软件能够满足设计需求,具有良好的可靠性,极大地提高了研究人员筛选有效实测数据的工作效率,为科学研究工作提供了有力的技术支撑。