期刊文献+
共找到526篇文章
< 1 2 27 >
每页显示 20 50 100
Penetration-deflagration coupling damage performance of rod-like reactive shaped charge penetrator impacting thick steel plates 被引量:1
1
作者 Tao Sun Haifu Wang +3 位作者 Shipeng Wang Jie Gong Wenhao Qiu Yuanfeng Zheng 《Defence Technology(防务技术)》 2025年第7期152-164,共13页
The penetration-deflagration coupling damage performance of rod-like reactive shaped charge pene-trator(RRSCP)impacting thick steel plates is investigated by theoretical analysis and experiments.A penetration-deflagra... The penetration-deflagration coupling damage performance of rod-like reactive shaped charge pene-trator(RRSCP)impacting thick steel plates is investigated by theoretical analysis and experiments.A penetration-deflagration coupling damage model is developed to predict the penetration depth and cratering diameter.Four type of aluminum-polytetrafluoroethylene-copper(Al-PTFE-Cu)reactive liners with densities of 2.3,2.7,3.5,and 4.5 g·cm^(-3) are selected to conduct the penetration experiments.The comparison results show that model predictions are in good agreement with the experimental data.By comparing the penetration depth and cratering diameter in the inert penetration mode and the penetration-deflagration coupling mode,the influence mechanism that the penetration-induced chemical response is unfavorable to penetration but has an enhanced cratering effect is revealed.From the formation characteristics,penetration effect and penetration-induced chemical reaction be-haviors,the influence of reactive liner density on the penetration-deflagration performance is further analyzed.The results show that increasing the density of reactive liner significantly increases both the kinetic energy and length of the reactive penetrator,meanwhile effectively reduces the weakened effect of penetration-induced chemical response,resulting in an enhanced penetration capability.However,due to the decreased diameter and potential energy content of reactive penetrator,the cratering capa-bility is weakened significantly. 展开更多
关键词 Reactive materials Al-PTFE composites Penetration model Damage effect
在线阅读 下载PDF
Fabrication of RDX Based Composites via Water Flotation and Monometallic Polydopamine Coatings
2
作者 LI Xiao QIN Liang +5 位作者 XU Jian-xin ZHANG Lu-yao SHEN Jin-jie LAN Guan-chao WANG Jian-long CHEN Li-zhen 《火炸药学报》 北大核心 2025年第8期763-769,I0004,共8页
To enhance the overall performance of cyclotrimethylenetrinitramine(RDX),a modification strategy for RDX via in situ coordination with monometallic polydopamine(PDA)coatings(PDA-Fe,PDA-Cu,and PDA-Pb)was developed.The ... To enhance the overall performance of cyclotrimethylenetrinitramine(RDX),a modification strategy for RDX via in situ coordination with monometallic polydopamine(PDA)coatings(PDA-Fe,PDA-Cu,and PDA-Pb)was developed.The thermal properties of pristine RDX and its modified variants(RDX@PDA-Fe,RDX@PDA-Cu,RDX@PDA-Pb)were characterized using differential scanning calorimetry(DSC)and accelerating rate calorimetry(ARC).The impact sensitivity of these materials was evaluated via the characteristic drop-height method.The results demonstrate that PDA-metal metal coatings—formed through coordination between PDA and single metal ions(Fe^(3+),Cu^(2+),or Pb^(2+))—significantly enhance RDX′s thermal stability while attenuating its mechanical sensitivity.These coatings act as energy-absorbing barriers against external stimuli,effectively mitigating RDX′s sensitivity.Furthermore,they elevate RDX′s thermal stability by increasing its decomposition onset temperature and accelerating its decomposition kinetics.The monometallic coatings also catalyze RDX′s thermal decomposition and combustion,with Cu and Pb exhibiting particularly distinct catalytic effects. 展开更多
关键词 physical chemistry RDX situ coordination COMPOSITES catalytic mechanic
在线阅读 下载PDF
美国MATECH公司与Cal Nano公司携手推动超高温复合材料商业化进程
3
作者 燕春晖(摘译) 《石油炼制与化工》 北大核心 2025年第6期64-64,共1页
超高温复合材料(UHT Composites)因其在极端环境下的优异性能,成为航空与国防领域的关键材料。然而,当前这类复合材料面临着工艺成熟度低、成本高昂的问题,严重阻碍了大规模商业化应用。美国MATECH公司与California Nanotechnologies(Ca... 超高温复合材料(UHT Composites)因其在极端环境下的优异性能,成为航空与国防领域的关键材料。然而,当前这类复合材料面临着工艺成熟度低、成本高昂的问题,严重阻碍了大规模商业化应用。美国MATECH公司与California Nanotechnologies(Cal Nano)公司近期达成战略合作,旨在通过整合专利技术与制造能力,推动基于电场辅助烧结技术(FAST)和放电等离子烧结(SPS)的复合材料工业化进程,推动超高温复合材料的发展。 展开更多
关键词 国防 UHT Composites 工艺成熟度 成本
在线阅读 下载PDF
Regulating the Amount of Graphene Oxide for Enhanced Capacitive Energy Storage of MOF Derived Materials
4
作者 Yong-Ji Qina Jing-Quan Yang +5 位作者 Hao Wang Mei-Ling Lian Pei-Pei Jia Jun Luo Xi-Jun Liu Jun-Feng Liu 《电化学(中英文)》 北大核心 2025年第7期18-26,共9页
In pursuit of more efficient and stable electrochemical energy storage materials,composite materials consisting of metal oxides and graphene oxide have garnered significant attention due to their unique structures and... In pursuit of more efficient and stable electrochemical energy storage materials,composite materials consisting of metal oxides and graphene oxide have garnered significant attention due to their unique structures and exceptional properties.Graphene oxide(GO),a two-dimensional material with an extremely high specific surface area and excellent conductivity,offers new possibilities for enhancing the electrochemical performance of metal oxides.In this work,we synthesized met-al-organic framework(MOF)and GO composites by regulating the amount of GO,and successfully prepared composites of metal oxides supported by nitrogen-doped carbon frameworks and GO through a simple one-step calcination process.Based on the electrochemical tests,the optimal amount of GO was determined.This research will provide new insights into and directions for designing and synthesizing metal oxide and graphene oxide composite materials with an ideal electro-chemical performance. 展开更多
关键词 Metal-organic framework Iron oxide Graphene oxide Composite material SUPERCAPACITOR
在线阅读 下载PDF
Effect of Nitrocellulose-modified HTPB Binder on the Thermal Decomposition Behavior of Ammonium Nitrate/Magnesium Solid Propellant
5
作者 Mohammed Jouini Amir Abdelaziz +4 位作者 Ahmed Fouzi Tarchoun Fateh Chalghoum Yash Pal Weiqiang Pang Djalal Trache 《火炸药学报》 北大核心 2025年第4期372-381,I0004,共11页
An energetic binder based on hydroxyl-terminated polybutadiene(HTPB),doped with different ratios of nitrocellulose(NC)(10%,20%,30%,and 50%),was developed to study the effect of NC doping on the thermal decomposition b... An energetic binder based on hydroxyl-terminated polybutadiene(HTPB),doped with different ratios of nitrocellulose(NC)(10%,20%,30%,and 50%),was developed to study the effect of NC doping on the thermal decomposition behavior of a composite propellant(CP)comprising ammonium nitrate(AN)as an oxidizer and magnesium(Mg)as a fuel.Optimization of the propellant formulation was conducted using Chemical Equilibrium with Applications-National Aeronautics and Space Administration(CEA-NASA)software,which demonstrated an increase in specific impulse by 12.09 s when the binder contained 50%NC.Fourier-transform infrared spectroscopy(FTIR)analysis confirmed the excellent compatibility between the components,and density measurements revealed an increase of 6.4%with a higher NC content.Morphological analysis using optical microscopy showed that NC doping improved the uniformity and compactness of the surface,reduced cavities,and achieved a more homogeneous particle distribution.Differential scanning calorimetry(DSC)analysis indicated a decrease in the decomposition temperature of the propellant as the NC content increased,while kinetic studies revealed a 48.68%reduction in the activation energy when 50%NC was incorporated into the binder.These findings suggest that the addition of NC enhances combustion efficiency and improves overall propellant performance.This study highlights the potential of the new HTPB-NC energetic binder as a promising approach for advancing solid propellant technology. 展开更多
关键词 physical chemistry composite propellant HTPB NITROCELLULOSE energetic binder thermal behavior
在线阅读 下载PDF
Low-value biomass-derived carbon composites for electromagnetic wave absorption and shielding: A review
6
作者 Sumanta Sahoo Rajesh Kumar Sung Soo Han 《新型炭材料(中英文)》 北大核心 2025年第2期293-316,共24页
The rising concern over electromagnetic (EM) pollution is re-sponsible for the rapid progress in EM interference (EMI) shielding and EM wave absorption in the last few years, and carbon materials with a large sur-face... The rising concern over electromagnetic (EM) pollution is re-sponsible for the rapid progress in EM interference (EMI) shielding and EM wave absorption in the last few years, and carbon materials with a large sur-face area and high porosity have been investigated. Compared to other car-bon materials, biomass-derived carbon (BC) are considered efficient and eco-friendly materials for this purpose. We summarize the recent advances in BC materials for both EMI shielding and EM wave absorption. After a brief overview of the synthesis strategies of BC materials and a precise out-line of EM wave interference, strategies for improving their EMI shielding and EM wave absorption are discussed. Finally, the existing challenges and the future prospects for such materials are briefly summarized. 展开更多
关键词 Biomass carbon COMPOSITES Dielectric loss EMI shielding EM wave absorption
在线阅读 下载PDF
2D Plain and 3D Needle-punched C/SiC Composites:Low-velocity Impact Damage Behavior and Failure Mechanism
7
作者 LUAN Xingang HE Dianwei +1 位作者 TU Jianyong CHENG Laifei 《无机材料学报》 北大核心 2025年第2期205-214,I0004,共11页
Continuous carbon fiber reinforced silicon carbide(C/SiC)composites are often subjected to low-velocity impacts when utilized as structural materials for thermal protection.However,research on in-plane impact damage a... Continuous carbon fiber reinforced silicon carbide(C/SiC)composites are often subjected to low-velocity impacts when utilized as structural materials for thermal protection.However,research on in-plane impact damage and multiple impact damage of C/SiC composites is limited.To investigate the in-plane impact damage behavior of C/SiC composites,a drop-weight impact test method was developed for strip samples,and these results were subsequently compared with those of C/SiC composite plates.Results show that the in-plane impact behavior of C/SiC strip samples is similar to that of C/SiC composite plates.Variation of the impact load with displacement is characterized by three stages:a nearly linear stage,a severe load drop stage,and a rebound stage where displacement occurs after the impact energy exceeds its peak value.Impact damage behavior under single and multiple impacts on 2D plain and 3D needled C/SiC composites was investigated at different impact energies and durations.Crack propagation in C/SiC composites was studied by computerized tomography(CT)technique.In the 2D plain C/SiC composite,load propagation between layers is hindered during impact,leading to delamination and 90°fiber brittle fracture.The crack length perpendicular to the impact direction increases with impact energy increases,resulting in more serious 0°fiber fracture and a larger area of fiber loss.In the 3D needled C/SiC composite,load propagates between the layers during impact through the connection of needled fibers.The fibers continue to provide substantial structural support,with notable instances of fiber pull-off and debonding.Consequently,the impact resistance is superior to that of 2D plain C/SiC composite.When the 3D needled C/SiC composite undergoes two successive impacts of 1.5 J,the energy absorption efficiency of the second impact is significantly lower,accompanied by a smaller impact displacement.Moreover,the total energy absorption efficiency of these two impacts of 1.5 J is lower than that of a single 3.0 J impact. 展开更多
关键词 ceramic-matrix composite FRACTURE low-velocity impact computerized tomography analysis
在线阅读 下载PDF
Influence of Si Content on the Mechanical and Tribological Properties of Laser Cladding FeCoNiBSiNb Amorphous Alloy Composite Materials
8
作者 DU Xian YU Dongxin +3 位作者 LIU Jian CAI Zhihai HE Dongyu WANG Xiaolong 《材料导报》 北大核心 2025年第12期156-162,共7页
Aseries of [(Fe_(0.6)Co_(0.2)Ni_(0.2))_(0.75-0.03x)B_(0.2)Si_(0.05+0.03x)]_(96)Nb_(4) amorphous alloy composite coatings were prepared by adjusting the silicon content(x=0,1,2,3,4,5,and 6)and their microstructures and... Aseries of [(Fe_(0.6)Co_(0.2)Ni_(0.2))_(0.75-0.03x)B_(0.2)Si_(0.05+0.03x)]_(96)Nb_(4) amorphous alloy composite coatings were prepared by adjusting the silicon content(x=0,1,2,3,4,5,and 6)and their microstructures and tribological properties were investigated by laser cladding technique.Additionally,the effect of Si on the glass forming ability(GFA)of the layers was understood.Results show that an appropriate Si content can refine the microstructure of the FeCoNiBSiNb laser cladding layers and improve the mechanical and tribological properties.The hardness of the coating layer increases monotonically with the Si content.At the Si content of 4.8at%(x=0),the coating layer exhibits a relatively low hardness(734.2HV 0.1).Conversely,at the silicon content of 13.44at%(x=3),the coating layer exhibits the highest hardness(1106HV 0.1).The non-crystalline content and tensile strength exhibit an initial increase,followed by a subsequent decrease.At x=2,the coating exhibits its maximum fracture strength(2880 MPa).However,when x>2,the fracture strength of the coating decreases with an increase in x.Conversely,with an increase in Si content,the wear volume loss initially decreases and then increases.At a Si content of 10.56at%(x=2),the coating exhibits the highest non-crystalline content(42%),the highest tensile strength(2880 MPa),and the most favorable dry friction performance. 展开更多
关键词 laser cladding FeCoNiBSiNb composite layer tribological property Si content
在线阅读 下载PDF
Products of multiplication,composition and differentiation on weighted Bergman spaces in the unit ball
9
作者 ZHANG Chao QIN Yuehai 《中山大学学报(自然科学版)(中英文)》 北大核心 2025年第2期160-169,共10页
The boundness and compactness of products of multiplication,composition and differentiation on weighted Bergman spaces in the unit ball are studied.We define the differentiation operator on the space of holomorphic fu... The boundness and compactness of products of multiplication,composition and differentiation on weighted Bergman spaces in the unit ball are studied.We define the differentiation operator on the space of holomorphic functions in the unit ball by radial derivative.Then we extend the Sharma's results. 展开更多
关键词 composition operator multiplication operator differentiation operator weighted Bergman space
在线阅读 下载PDF
Preparation and photocatalytic performance of Cs_(x)WO_(3)/TiO_(2)based on full spectral response
10
作者 LIU Zhangyong XU Lihui +8 位作者 YANG Yue WANG Liming PAN Hong HUANG Xinzhe FU Xueqiang ZHANG Yingxiu DOU Meiran WANG Meng TENG Yi 《无机化学学报》 北大核心 2025年第7期1445-1464,共20页
Cs_(x)WO_(3)/TiO_(2) composites with full-spectrum catalytic activity were prepared by solvothermal reaction.The composites were characterized using X-ray diffraction(XRD)analysis,scanning electron microscopy(SEM),tra... Cs_(x)WO_(3)/TiO_(2) composites with full-spectrum catalytic activity were prepared by solvothermal reaction.The composites were characterized using X-ray diffraction(XRD)analysis,scanning electron microscopy(SEM),transmission electron microscopy(TEM),specific surface area testing,X-ray photoelectron spectroscopy(XPS),and UV-Vis diffuse reflectance spectra(UV-Vis DRS).Cs_(x)WO_(3) and TiO_(2) were uniformly bonded together in the compos-ites.The heterojunction structure was formed.The band gap was reduced from 2.75 to 2.65 eV.The photocatalytic property of Cs_(x)WO_(3)/TiO_(2)was demonstrated by the degradation rates of 20 mg·L^(-1) methylene blue dye,which were 99.7%,91.4%,and 70.7%under irradiation from a 300 W high-pressure mercury lamp,a 500 W xenon lamp,and a 400 W infrared lamp,respectively.After five cycles of photocatalytic degradation,the composite photocatalyst still showed a degradation efficiency of 87.6%.This indicates that Cs_(x)WO_(3)/TiO_(2) has good photocatalytic degradability and cyclic stability.The photocatalytic mechanism of Cs_(x)WO_(3)/TiO_(2)was investigated.The trapping experiments of the active species showed that the main active substances were the empty hole(h+)and hydroxyl radical(·OH). 展开更多
关键词 CsxWO3-based solvothermal method full spectrum composite material photocatalytic activity
在线阅读 下载PDF
Structural and electronic properties of nitrogen-doped ultrananocrystalline diamond films grown by microwave plasma CVD
11
作者 Venkateswara Rao Sodisetti Somnath Bhattacharyya 《新型炭材料(中英文)》 北大核心 2025年第5期1169-1183,I0058-I0064,共22页
Nitrogen doping in chemical vapor deposition-derived ultrananocrystalline diamond(UNCD)films in-creases the electronic conductivity,yet its microstructural effects on electron transport are insufficiently understood.W... Nitrogen doping in chemical vapor deposition-derived ultrananocrystalline diamond(UNCD)films in-creases the electronic conductivity,yet its microstructural effects on electron transport are insufficiently understood.We investigated the formation of nitrogen-induced diaph-ite structures(hybrid diamond-graphite phases)and their role in changing the conductivity.Nitrogen doping in a hy-drogen-rich plasma environment promotes the emergence of unique sp^(3)-sp^(2)bonding interfaces,where diamond grains are covalently integrated with graphitic domains,facilitating a structure-driven electronic transition.High-resolution transmis-sion electron microscopy and selected area electron diffraction reveal five-fold,six-fold and twelve-fold symmetries,along with an atypical{200}crystallographic reflection,confirming diaphite formation in 5%and 10%N-doped UNCD films,while high-er doping levels(15%and 20%)result in extensive graphitization.Raman spectroscopy tracks the evolution of sp^(2)bonding with increasing nitrogen content,while atomic force microscopy and X-ray diffraction indicate a consistent diamond grain size of~8 nm.Cryogenic electronic transport measurements reveal a conductivity increase from 8.72 to 708 S/cm as the nitrogen dop-ing level increases from 5%to 20%,which is attributed to defect-mediated carrier transport and 3D weak localization.The res-ulting conductivity is three orders of magnitude higher than previously reported.These findings establish a direct correlation between diaphite structural polymorphism and tunable electronic properties in nitrogen-doped UNCD films,offering new ways for defect-engineering diamond-based electronic materials. 展开更多
关键词 CVD diamond Nitrogen doping Diamond-graphene composite 3D Weak Localization Diamond electronics
在线阅读 下载PDF
GeP_(3)/Ketjen Black Composite:Preparation via Ball Milling and Performance as Anode Material for Sodium-ion Batteries
12
作者 YANG Shuqi YANG Cunguo +2 位作者 NIU Huizhu SHI Weiyi SHU Kewei 《无机材料学报》 北大核心 2025年第3期329-336,I0010,I0011,共10页
Metal phosphides have been studied as prospective anode materials for sodium-ion batteries(SIBs)due to their higher specific capacity compared to other anode materials.However,rapid capacity decay and limited cycle li... Metal phosphides have been studied as prospective anode materials for sodium-ion batteries(SIBs)due to their higher specific capacity compared to other anode materials.However,rapid capacity decay and limited cycle life caused by volume expansion and low electrical conductivity of phosphides in SIBs remain still unsolved.To address these issues,GeP_(3) was first prepared by high-energy ball milling,and then Ketjen black(KB)was introduced to synthesize composite GeP_(3)/KB anode materials under controlled milling speed and time by a secondary ball milling process.During the ball milling process,GeP_(3) and KB form strong chemical bonds,resulting in a closely bonded composite.Consequently,the GeP_(3)/KB anodes was demonstrated excellent sodium storage performance,achieving a high reversible capacity of 933.41 mAh·g^(–1) at a current density of 0.05 A·g^(–1) for a special formula of GeP_(3)/KB-600-40 sample prepared at ball milling speed of 600 r/min for 40 h.Even at a high current density of 2 A·g^(–1) over 200 cycles,the capacity remains 314.52 mAh·g^(–1) with a retention rate of 66.6%.In conclusion,this work successfully prepares GeP_(3)/KB anode-carbon composite for electrodes by high-energy ball milling,which can restrict electrode volume expansion,enhance capacity,and improve cycle stability of SIBs. 展开更多
关键词 sodium-ion battery GeP_(3)/C composite Ketjen black ball milling
在线阅读 下载PDF
Evolution of the volume expansion of SiO/C composite electrodes in lithium-ion batteries during aging cycles
13
作者 Haosong Yang Kai Sun +2 位作者 Xueyan Li Peng Tan Lili Gong 《中国科学技术大学学报》 北大核心 2025年第2期27-33,26,I0001,共9页
As a negative electrode material for lithium-ion batteries,silicon monoxide(SiO)suffers from dramatic volume changes during cycling,causing excessive stress within the electrode and resulting in electrode deformation ... As a negative electrode material for lithium-ion batteries,silicon monoxide(SiO)suffers from dramatic volume changes during cycling,causing excessive stress within the electrode and resulting in electrode deformation and fragmentation.This ultimately leads to a decrease in cell capacity.The trends of volume expansion and capacity change of the SiO/graphite(SiO/C)composite electrode during cycling were investigated via in situ expansion monitoring.First,a series of expansion test schemes were designed,and the linear relationship between negative electrode expansion and cell capacity degradation was quantitatively analyzed.Then,the effects of different initial pressures on the long-term cycling performance of the cell were evaluated.Finally,the mechanism of their effects was analyzed by scanning electron microscope.The results show that after 50 cycles,the cell capacity decreases from 2.556 mAh to 1.689 mAh,with a capacity retention ratio(CRR)of only 66.08%.A linear relationship between the capacity retention ratio and thickness expansion was found.Electrochemical measurements and scanning electron microscope images demonstrate that intense stress inhibits the lithiation of the negative electrode and that the electrode is more susceptible to irreversible damage during cycling.Overall,these results reveal the relationship between the cycling performance of SiO and the internal pressure of the electrode from a macroscopic point of view,which provides some reference for the application of SiO/C composite electrodes in lithium-ion batteries. 展开更多
关键词 lithium-ion batteries in situ expansion measurement initial stress cycle life SiO/C composite electrode
在线阅读 下载PDF
Cyclic behavior of root-loess composites under direct simple shear test conditions and insights from discrete element method modeling
14
作者 SUN Yuan LI Hui CHENG Zhifeng 《水利水电技术(中英文)》 北大核心 2025年第S1期665-680,共16页
Plant roots are widely known to provide mechanical reinforcement to soils against shearing and further increase slope stability.However,whether roots provide reinforcement to loess cyclic re-sistance and how various f... Plant roots are widely known to provide mechanical reinforcement to soils against shearing and further increase slope stability.However,whether roots provide reinforcement to loess cyclic re-sistance and how various factors affect roots reinforcement during seismic loading have rarely been studied.The objective is to conduct a series of cyclic direct simple shear tests and DEM numerical simulation to investigate the cyclic behaviour of rooted loess.The effects of initial static shear stress and loading frequency on the cyclic resistance of root-soil composites were first investigated.After that,cyclic direct simple shear simulations at constant volume were carried out based on the discrete element method(PFC^(3D))to investigate the effects of root geome-try,mechanical traits and root-soil bond strength on the cyclic strength of rooted loess.It was discovered that the roots could effectively improve the cyclic resistance of loess.The cyclic resistance of the root-soil composite decreases with the increase of the initial shear stress,then increases,and improves with the increase of the frequency.The simulation result show that increases in root elastic modulus and root-soil interfacial bond strength can all enhance the cyclic resistance of root-soil composites,and the maximum cyclic resistance of the root-soil composite was obtained when the initial inclination angle of the root system was 90°. 展开更多
关键词 root-soil composite cyclic direct simple shear tests PFC^(3D)
在线阅读 下载PDF
Ablative Properties of SiC_(p) Doped C_(f)/Li_(2)O-Al_(2)O_(3)-SiO_(2) Composites
15
作者 LIN Yuanwei JING Zhao +4 位作者 CHEN Hetuo LI Jiaheng QIN Xianpeng ZHOU Guohong WANG Shiwei 《无机材料学报》 北大核心 2025年第10期1153-1162,共10页
In a high heat flux ablative environment,the surface temperature of aircraft rises rapidly,leading to traditional high thermal conductivity materials being ineffective at protecting internal metal components.In this s... In a high heat flux ablative environment,the surface temperature of aircraft rises rapidly,leading to traditional high thermal conductivity materials being ineffective at protecting internal metal components.In this study,continuous carbon fiber reinforced Li_(2)O-Al_(2)O_(3)-SiO_(2)(C_(f)/LAS)glass ceramic composites doped with SiC particles(SiC_(p))were prepared by slurry immersion winding and hot pressing sintering.Effect of matrix crystallinity on ablative properties of the composites under ultra-high heat flux was investigated.By utilizing heat absorption and low thermal conductivity characteristics associated with SiO_(2)gasification within composite materials,both surface and internal temperatures of these materials are effectively reduced,thereby ensuring the safe operation of aircraft and electronic devices.Results indicate that the average linear ablation rate of composites doped with 10%(in mass)of SiC_(p)significantly decreases at a heat flux of 20 MW/m^(2).Transmission electron microscope observation reveals that the doped glass matrix exhibits increased crystallinity,reduced internal stress,and minimized lattice distortion,thereby enhancing the composites’high-temperature performance.However,excessive SiC_(p)doping leads to reduced crystallinity and deteriorated ablation performance.Ultimately,the average linear ablation rate of C_(f)/LAS composites with 10%(in mass)SiC_(p)at 20 MW/m^(2)heat flux is comparable to that of commercial carbon/carbon composites,accompanied by providing lower thermal conductivity and higher bending strength.This novel high-performance C_(f)/LAS composite is cost-effective,short-cycled,and suitable for mass production,offering promising potential for widespread application in ablation-resistant components of hypersonic vehicles. 展开更多
关键词 ablation-resistant C_(f)/LAS composite SiC doping crystallinity of glass matrix long-range ordered
在线阅读 下载PDF
Peroxymonosulfate Activation by CoFe_(2)O_(4)/MgAl-LDH Catalyst for the Boosted Degradation of Antibiotic
16
作者 LI Jianjun CHEN Fangming +5 位作者 ZHANG Lili WANG Lei ZHANG Liting CHEN Huiwen XUE Changguo XU Liangji 《无机材料学报》 北大核心 2025年第4期440-448,I0022-I0024,共12页
Owing to outstanding hydrophilicity and ionic interaction,layered double hydroxides(LDHs)have emerged as a promising carrier for high performance catalysts.However,the synthesis of new specialized catalytic LDHs for d... Owing to outstanding hydrophilicity and ionic interaction,layered double hydroxides(LDHs)have emerged as a promising carrier for high performance catalysts.However,the synthesis of new specialized catalytic LDHs for degradation of antibiotics still faces some challenges.In this study,a CoFe_(2)O_(4)/MgAl-LDH composite catalyst was synthesized using a hydrothermal coprecipitation method.Comprehensive characterization reveals that the surface of MgAl-LDH is covered with nanometer CoFe_(2)O_(4) particles.The specific surface area of CoFe_(2)O_(4)/MgAl-LDH is 82.84 m^(2)·g^(-)1,which is 2.34 times that of CoFe_(2)O_(4).CoFe_(2)O_(4)/MgAl-LDH has a saturation magnetic strength of 22.24 A·m^(2)·kg^(-1) facilitating efficient solid-liquid separation.The composite catalyst was employed to activate peroxymonosulfate(PMS)for the efficient degradation of tetracycline hydrochloride(TCH).It is found that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH significantly exceeds that of CoFe_(2)O_(4).The maximum TCH removal reaches 98.2%under the optimal conditions([TCH]=25 mg/L,[PMS]=1.5 mmol/L,CoFe_(2)O_(4)/MgAl-LDH=0.20 g/L,pH 7,and T=25℃).Coexisting ions in the solution,such as SO_(4)^(2-),Cl-,H_(2)PO_(4)^(-),and CO_(3)^(2-),have a negligible effect on catalytic performance.Cyclic tests demonstrate that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH remains 67.2%after five cycles.Mechanism investigations suggest that O_(2)^(•-)and ^(1)O_(2) produced by CoFe_(2)O_(4)/MgAl-LDH play a critical role in the catalytic degradation. 展开更多
关键词 magnetic composite catalyst PEROXYMONOSULFATE CoFe_(2)O_(4)/MgAl-LDH advanced oxidation process antibiotic
在线阅读 下载PDF
Enhancing energy density in planar micro-supercapacitors:The role of few-layer graphite/carbon black/NiCo_(2)O_(4) composite materials
17
作者 ZHANG Wanggang HUANG Lei +3 位作者 WANG Menghu WANG Jian WEI Aili LIU Yiming 《燃料化学学报(中英文)》 北大核心 2025年第5期646-662,共17页
The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this is... The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this issue by leveraging screen-printing technology to fabricate high-performance PMSCs using innovative composite ink.The ink,a synergistic blend of few-layer graphene(Gt),carbon black(CB),and NiCo_(2)O_(4),was meticulously mixed to form a conductive and robust coating that enhanced the capacitive performance of the PMSCs.The optimized ink formulation and printing process result in a micro-supercapacitor with an exceptional areal capacitance of 18.95 mF/cm^(2)and an areal energy density of 2.63μW·h/cm^(2)at a current density of 0.05 mA/cm^(2),along with an areal power density of 0.025 mW/cm^(2).The devices demonstrated impressive durability with a capacitance retention rate of 94.7%after a stringent 20000-cycle test,demonstrating their potential for long-term applications.Moreover,the PMSCs displayed excellent mechanical flexibility,with a capacitance decrease of only 3.43%after 5000 bending cycles,highlighting their suitability for flexible electronic devices.The ease of integrating these PMSCs into series and parallel configurations for customized power further underscores their practicality for integrated power supply solutions in various technologies. 展开更多
关键词 graphite/carbon black composite NiCo_(2)O_(4) screen printing planar micro-supercapacitor energy density mechanical flexibility
在线阅读 下载PDF
Research on fracture characteristics and support mechanism of shallow buried double-soft composite roof
18
作者 ZHANG Wei ZHANG Chun-wang +2 位作者 GUO Wei-yao ZHANG Bao-liang LIU Wan-rong 《Journal of Central South University》 2025年第5期1838-1854,共17页
Affected by the geological characteristics of coal bearing strata in western mining areas of China,the double soft composite roof has low strength and poor integrity,which is prone to induce disasters such as large de... Affected by the geological characteristics of coal bearing strata in western mining areas of China,the double soft composite roof has low strength and poor integrity,which is prone to induce disasters such as large deformation and roof collapse.Four-point bending tests were conducted on anchored double-layer rock beams with different pre tightening force and upper/lower rock strength ratios(Ⅰ/Ⅱ)based on the digital speckle correlation method(DSCM).The research results indicate that the instability process of anchored roof can be divided into stages of elastic deformation,crack propagation,alternating fracture,and failure collapse.The proportion of crack propagation and alternating fracture processes increased with the increase of pre-tightening force and Ⅰ/Ⅱ.The pre-tightening force can suppress the sliding of the upper/lower rock interface,and delay the initiation and propagation of cracks.As Ⅰ/Ⅱ increases,the failure mode changes from tensile failure steel strip to shear failure anchor rod.Steel strip can improve the continued bearing effect of anchored roof during crack propagation and alternating fracture processes. 展开更多
关键词 double-soft composite roof anchored composite beams anchored rock fracture pre-tightening force crack propagation
在线阅读 下载PDF
Advanced composite wing design for next-generation military UAVs:A progressive numerical optimization framework
19
作者 M.Atif Yilmaz Kemal Hasirci +1 位作者 Berk Gündüz Alaeddin Burak Irez 《Defence Technology(防务技术)》 2025年第6期141-155,共15页
The design of unmanned aerial vehicles(UAVs)revolves around the careful selection of materials that are both lightweight and robust.Carbon fiber-reinforced polymer(CFRP)emerged as an ideal option for wing construction... The design of unmanned aerial vehicles(UAVs)revolves around the careful selection of materials that are both lightweight and robust.Carbon fiber-reinforced polymer(CFRP)emerged as an ideal option for wing construction,with its mechanical qualities thoroughly investigated.In this study,we developed and optimized a conceptual UAV wing to withstand structural loads by establishing progressive composite stacking sequences,and we conducted a series of experimental characterizations on the resulting material.In the optimization phase,the objective was defined as weight reduction,while the Hashin damage criterion was established as the constraint for the optimization process.The optimization algorithm adaptively monitors regional damage criterion values,implementing necessary adjustments to facilitate the mitigation process in a cost-effective manner.Optimization of the analytical model using Simulia Abaqus~(TM)and a Python-based user-defined sub-routine resulted in a 34.7%reduction in the wing's structural weight after 45 iterative rounds.Then,the custom-developed optimization algorithm was compared with a genetic algorithm optimization.This comparison has demonstrated that,although the genetic algorithm explores numerous possibilities through hybridization,the custom-developed algorithm is more result-oriented and achieves optimization in a reduced number of steps.To validate the structural analysis,test specimens were fabricated from the wing's most critically loaded segment,utilizing the identical stacking sequence employed in the optimization studies.Rigorous mechanical testing revealed unexpectedly high compressive strength,while tensile and bending strengths fell within expected ranges.All observed failure loads remained within the established safety margins,thereby confirming the reliability of the analytical predictions. 展开更多
关键词 Aircraft wing Carbon fiber Composite Optimization UAV
在线阅读 下载PDF
FDM - 3D printing of thermoplastic composites with high energetic solids content designed for gun propellants
20
作者 Marin Alexandru Ovidiu George Iorga +8 位作者 Gabriela Toader Cristiana Epure Mihail Munteanu Adrian Nicolae Rotariu Marius Marmureanu Gabriel Flavius Noja Aurel Diacon Tudor Viorel Tiganescu Florin Marian Dirloman 《Defence Technology(防务技术)》 2025年第7期165-179,共15页
This study represents an important step forward in the domain of additive manufacturing of energetic materials.It presents the successful formulation and fabrication by 3D printing of gun propellants using Fused Depos... This study represents an important step forward in the domain of additive manufacturing of energetic materials.It presents the successful formulation and fabrication by 3D printing of gun propellants using Fused Deposition Modeling(FDM)technology,highlighting the immense potential of this innovative approach.The use of FDM additive manufacturing technology to print gun propellants is a significant advancement due to its novel application in this field,which has not been previously reported.Through this study,the potential of FDM 3D-printing in the production of high-performance energetic composites is demonstrated,and also a new standard for manufacturability in this field can be established.The thermoplastic composites developed in this study are characterized by a notably high energetic solids content,comprising 70%hexogen(RDX)and 10%nitrocellulose(NC),which surpasses the conventional limit of 60%energetic solids typically achieved in stereolithography and light-curing 3D printing methods.The primary objective of the study was to optimize the formulation,enhance performance,and establish an equilibrium between printability and propellant efficacy.Among the three energetic for-mulations developed for 3D printing feedstock,only two were suitable for printing via the FDM tech-nique.Notably,the formulation consisting of 70%RDX,10%NC,and 20%polycaprolactone(PCL)emerged as the most advantageous option for gun propellants,owing to its exceptional processability,ease of printability,and high energetic performance. 展开更多
关键词 Propellants FDM 3D-printing EXPLOSIVE RDX Thermoplastic energetic composite Additive manufacturing
在线阅读 下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部