Graphene oxide nanomaterials are increasingly used in various fields due to their superior properties.In order to study the influence of graphene oxide additives on the performance of modified asphalt,in this study,gr...Graphene oxide nanomaterials are increasingly used in various fields due to their superior properties.In order to study the influence of graphene oxide additives on the performance of modified asphalt,in this study,graphene oxide modified asphalt was prepared and characteristics was studied including the high deformation resistance performance and the self-healing property of modified asphalt.Functional groups and morphology of graphene oxide modified asphalt were described by Fourier transform infrared spectroscopy.The high deformation resistance performance and self-healing effect of asphalt samples were obtained through dynamic slear rheometer(DSR)test.Results shows that graphene oxide dispersions improve the performance of asphalt relatively well compared to graphene oxide powder.There is no chemical reaction between graphene oxide and asphalt,but physical connection.The addition of graphene oxide improved the high deformation resistance of modified asphalt and expedited the self-healing ability of asphalt under fatigue load.展开更多
Petroleum asphalt,an important by-product of the petrochemical industry,has diverse applications but often suffers from low industrial added value.Because of its low cost,high carbon content,and high polycyclic aromat...Petroleum asphalt,an important by-product of the petrochemical industry,has diverse applications but often suffers from low industrial added value.Because of its low cost,high carbon content,and high polycyclic aromatic hydrocarbon content,appropriate modification can increase its value and expand its energy storage applications.Current research progress on the common preparation methods of petroleum asphalt-based carbon materials,including template-assisted pyrolysis,molten salt treatment,activation,heteroatom doping,and pre-oxidation is reviewed,and its use in supercapacitors and alkali metal ion batteries,is also elaborated.Feasible solutions for the current problems with petroleum asphalt are proposed,with the aim of providing insights into its high value-added utilization.展开更多
基金supported by Gansu Provincial Science and Technology Plan(23CXGA0195)Longnan Science and Technology Plan(2024CX03)。
文摘Graphene oxide nanomaterials are increasingly used in various fields due to their superior properties.In order to study the influence of graphene oxide additives on the performance of modified asphalt,in this study,graphene oxide modified asphalt was prepared and characteristics was studied including the high deformation resistance performance and the self-healing property of modified asphalt.Functional groups and morphology of graphene oxide modified asphalt were described by Fourier transform infrared spectroscopy.The high deformation resistance performance and self-healing effect of asphalt samples were obtained through dynamic slear rheometer(DSR)test.Results shows that graphene oxide dispersions improve the performance of asphalt relatively well compared to graphene oxide powder.There is no chemical reaction between graphene oxide and asphalt,but physical connection.The addition of graphene oxide improved the high deformation resistance of modified asphalt and expedited the self-healing ability of asphalt under fatigue load.
文摘Petroleum asphalt,an important by-product of the petrochemical industry,has diverse applications but often suffers from low industrial added value.Because of its low cost,high carbon content,and high polycyclic aromatic hydrocarbon content,appropriate modification can increase its value and expand its energy storage applications.Current research progress on the common preparation methods of petroleum asphalt-based carbon materials,including template-assisted pyrolysis,molten salt treatment,activation,heteroatom doping,and pre-oxidation is reviewed,and its use in supercapacitors and alkali metal ion batteries,is also elaborated.Feasible solutions for the current problems with petroleum asphalt are proposed,with the aim of providing insights into its high value-added utilization.