期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一种复值可分离的泛函网络学习算法 被引量:6
1
作者 周永权 赵斌 焦李成 《系统工程与电子技术》 EI CSCD 北大核心 2006年第8期1244-1248,共5页
泛函网络是最近提出的一种对神经网络的一般化推广。与神经网络不同,它处理的只是一般的实值泛函模型,针对该问题,将实值泛函神经元推广到复值泛函神经元,再对复值泛函神经元的结构作了变形,提出了一种复值泛函网络新模型,给出了基于梯... 泛函网络是最近提出的一种对神经网络的一般化推广。与神经网络不同,它处理的只是一般的实值泛函模型,针对该问题,将实值泛函神经元推广到复值泛函神经元,再对复值泛函神经元的结构作了变形,提出了一种复值泛函网络新模型,给出了基于梯度下降法的复值可分离泛函网络学习算法。采用复分析的方法,利用单一泛函神经元模型,借助于正交边界和实步长函数概念求解复值XOR分类问题。通过理论分析可看出,相比复值神经网络,用复值泛函网络解决问题具有很强的计算能力。 展开更多
关键词 复基函数簇 复值泛函网络 学习算法 复XOR分类 正交边界 实步长函数
在线阅读 下载PDF
基于EMD和集合预报技术的气候预测方法 被引量:8
2
作者 毕硕本 陈譞 +2 位作者 覃志年 徐寅 王必强 《热带气象学报》 CSCD 北大核心 2012年第2期283-288,共6页
气候系统是典型的非平稳性系统,然而对于气候观测数据的处理通常是在时间序列平稳的假定下完成的,比如气温和降水的多步预报,这通常会导致预报准确度较低。为改进该缺陷,首先将非平稳数据序列分解成平稳的、多尺度特征的本征模态函数分... 气候系统是典型的非平稳性系统,然而对于气候观测数据的处理通常是在时间序列平稳的假定下完成的,比如气温和降水的多步预报,这通常会导致预报准确度较低。为改进该缺陷,首先将非平稳数据序列分解成平稳的、多尺度特征的本征模态函数分量(IMF),再使用数值集合预报与逐步回归分析相结合的方式对每一个IMF分量构建不同的预报模型,最后线性拟合成预报结果。通过Visual Studio 2008开发平台使用上述方法建立了一个短期气候预报系统,采用广西区88个气象站1957—2005年的2月距平气温数据进行实际验证。结果表明,相对于普通预测和单一预测方法,加入了EMD和集合预报技术的方法在仅用历史资料进行多步预测的情况下,对于气候的变化趋势以及突发性气候具有更好的预报能力。 展开更多
关键词 短期气候预测 经验模态分解(EMD) 集合预报 均生函数逐步回归模型 时间序列
在线阅读 下载PDF
基于随机性分析的虚假趋势时间序列判别
3
作者 李建勋 马美玲 +1 位作者 郭建华 严峻 《计算机应用》 CSCD 北大核心 2019年第10期2955-2959,共5页
针对符合一定数据模式或规律的虚假数据识别问题,提出一种基于随机性分析的虚假趋势时间序列判别方法。该方法在分析时间序列组成的基础上,首先探索虚假趋势时间序列的简单伪造和复杂伪造方式,并将其分解为虚假趋势和虚假随机两部分;然... 针对符合一定数据模式或规律的虚假数据识别问题,提出一种基于随机性分析的虚假趋势时间序列判别方法。该方法在分析时间序列组成的基础上,首先探索虚假趋势时间序列的简单伪造和复杂伪造方式,并将其分解为虚假趋势和虚假随机两部分;然后通过基函数逼近进行时间序列虚假趋势部分的提取,采用随机性理论开展虚假随机部分的分析;最终借助单比特频数和块内频数对虚假随机部分是否具备随机性进行检测,为具有一定趋势特征的虚假时间序列的判别提供了一个解决方案。实验结果表明:该方法能够有效地分解虚假时间序列和提取虚假趋势部分,实现简单伪造数据和复杂伪造数据的判别,支持对通过观测手段或者检测设备所获取的数值型数据的真伪分析,进一步提高了虚假数据可判别范围,平均判别正确率可达74.7%。 展开更多
关键词 虚假数据 时间序列 趋势性 随机性分析 基函数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部