期刊文献+
共找到136篇文章
< 1 2 7 >
每页显示 20 50 100
Intelligent recognition and information extraction of radar complex jamming based on time-frequency features
1
作者 PENG Ruihui WU Xingrui +3 位作者 WANG Guohong SUN Dianxing YANG Zhong LI Hongwen 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1148-1166,共19页
In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise p... In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise parameter information,particularly in low signal-to-noise ratio(SNR)situations.In this paper,an approach to intelligent recognition and complex jamming parameter estimate based on joint time-frequency distribution features is proposed to address this challenging issue.Firstly,a joint algorithm based on YOLOv5 convolutional neural networks(CNNs)is proposed,which is used to achieve the jamming signal classification and preliminary parameter estimation.Furthermore,an accurate jamming key parameters estimation algorithm is constructed by comprehensively utilizing chi-square statistical test,feature region search,position regression,spectrum interpolation,etc.,which realizes the accurate estimation of jamming carrier frequency,relative delay,Doppler frequency shift,and other parameters.Finally,the approach has improved performance for complex jamming recognition and parameter estimation under low SNR,and the recognition rate can reach 98%under−15 dB SNR,according to simulation and real data verification results. 展开更多
关键词 complex jamming recognition time frequency feature convolutional neural network(CNN) parameter estimation
在线阅读 下载PDF
基于复数域卷积神经网络的ISAR包络对齐方法研究 被引量:1
2
作者 王勇 夏浩然 刘明帆 《信号处理》 北大核心 2025年第3期409-425,共17页
在逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)成像领域,运动补偿是确保高质量图像生成的关键环节。包络对齐(Range Alignment,RA)作为运动补偿的首要步骤,对于校正由平动分量引起的回波信号包络偏移至关重要。本文提出了... 在逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)成像领域,运动补偿是确保高质量图像生成的关键环节。包络对齐(Range Alignment,RA)作为运动补偿的首要步骤,对于校正由平动分量引起的回波信号包络偏移至关重要。本文提出了一种基于复数域卷积神经网络(Complex-Valued Convolutional Neural Network,CVCNN)的包络对齐新方法,旨在通过深度学习策略提升包络对齐的精度与计算效率。本文所提方法利用了卷积神经网络强大的特征学习能力,构建了一个能够映射一维距离像与包络补偿量之间复杂关系的模型。通过将传统的实值卷积神经网络拓展至复数域,不仅完整保留了回波信号中的相位信息,而且有效引入了复数域残差块及线性连接机制,进一步精细化了网络结构设计。这种架构改进使得所提算法能实现低信噪比(Signal-to-Noise Ratio,SNR)条件下对ISAR距离像的高效包络对齐。在数据生成方面,本文基于雷达仿真参数,通过成像模拟仿真构建了ISAR回波数据集。该数据集经过归一化处理后,输入网络进行训练,使网络能够学习从未对齐回波到对应补偿量的映射关系。本文所提方法采用迁移学习策略,对基于仿真数据预训练的模型进行微调,以适应实测数据。这一策略不仅增强了结果的可靠性,同时也大幅缩短了模型的迭代周期。在实验验证方面,本文采用仿真与实测数据进行综合测试,以包络对齐精度、成像结果质量和计算效率为评价指标,全面验证了算法的有效性。实验结果表明,在不同信噪比条件下,本文所提方法均展现出了优越的包络对齐性能,进而可以实现高质量成像,同时在计算效率上也具有显著优势。 展开更多
关键词 逆合成孔径雷达 包络对齐 复数域卷积神经网络 有监督学习
在线阅读 下载PDF
基于复数协方差卷积神经网络的运动想象脑电信号解码方法 被引量:1
3
作者 黄仁慧 张锐锋 +3 位作者 文晓浩 闭金杰 黄守麟 李廷会 《广西师范大学学报(自然科学版)》 北大核心 2025年第3期43-56,共14页
深度挖掘和利用脑电信号的特征信息,以提高运动想象的分类性能,一直是脑机接口的研究热点。考虑到脑电特征空间具有高维性且与幅值和相位密切相关,如何有效表达和同时利用脑电的幅值和相位信息已经成为一个难题。为此,本研究提出一种基... 深度挖掘和利用脑电信号的特征信息,以提高运动想象的分类性能,一直是脑机接口的研究热点。考虑到脑电特征空间具有高维性且与幅值和相位密切相关,如何有效表达和同时利用脑电的幅值和相位信息已经成为一个难题。为此,本研究提出一种基于复数协方差特征的三维复值卷积神经网络。首先,构建脑电不同频率下的复数协方差矩阵特征,不仅通过复值表示将幅值和相位信息结合在一起,并且保留分类所需的多变量信息,如幅值、相位、空间位置、频率等。其次,设计针对多复数协方差特征的全复数卷积神经网络,实现运动想象任务的高性能分类。在2个公开数据集上的实验结果表明,本研究提出的方法可获得比现有前沿方法至少高出2.49和1.85个百分点的平均准确率。 展开更多
关键词 脑电信号 脑机接口 幅相信息融合 复数协方差特征 复值卷积神经网络 信息交互
在线阅读 下载PDF
面向交通标志检测的DSA-YOLOv8算法
4
作者 周新翔 王可庆 +2 位作者 周翔 张强 薛国强 《计算机工程与设计》 北大核心 2025年第8期2320-2327,共8页
针对交通标志检测存在精度欠佳及模型复杂度高的问题,提出了一种基于YOLOv8的轻量化交通标志检测模型。引入动态蛇形卷积模块,并结合其思想改进C2f模块,增强模型在复杂背景下的特征提取能力。通过优化小目标检测层,改善小目标检测精度... 针对交通标志检测存在精度欠佳及模型复杂度高的问题,提出了一种基于YOLOv8的轻量化交通标志检测模型。引入动态蛇形卷积模块,并结合其思想改进C2f模块,增强模型在复杂背景下的特征提取能力。通过优化小目标检测层,改善小目标检测精度并有效降低模型参数量。利用AFCA(adaptive fine-grained channel)注意力机制改造空间金字塔池化层,实现特征权重的动态调整。实验结果表明,在CCTSDB-2021交通标志数据集上,改进的模型在精确率、召回率和mAP_(50)方面较原始模型分别提升了1.8%、7.1%和7.6%,参数量和模型大小分别减少了50.53%、45.64%,展现出较高的实用价值。 展开更多
关键词 交通标志检测 YOLOv8 小目标 复杂场景 卷积神经网络 特征信息 动态蛇形卷积
在线阅读 下载PDF
融合深度强化学习和图卷积神经网络的类集成测试序列生成方法
5
作者 王晨源 张艳梅 袁冠 《计算机科学》 北大核心 2025年第6期58-65,共8页
类集成测试确保软件系统中多个类之间正常交互和协作,合理的类集成测试序列可以降低测试成本。为了降低程序中类集成测试序列的测试成本,国内外研究人员提出了多种类集成测试序列生成方法,但已有的方法生成的类集成测试序列的测试成本... 类集成测试确保软件系统中多个类之间正常交互和协作,合理的类集成测试序列可以降低测试成本。为了降低程序中类集成测试序列的测试成本,国内外研究人员提出了多种类集成测试序列生成方法,但已有的方法生成的类集成测试序列的测试成本过高。针对上述问题,提出一种融合深度强化学习和图卷积神经网络的类集成测试序列生成方法。该方法首先将图卷积神经网络作为深度强化学习中的神经网络部分,并对智能体的网络结构和环境状态等方面进行改进,使环境和智能体可以基于图结构的数据进行交互;然后通过设计强化学习中的动作空间和奖励函数等基本要素,完成类集成测试序列的生成场景;最终实现智能体在不断地学习和尝试中得到最佳的类集成测试序列。实验结果表明,在以总体测试桩复杂度作为度量指标时,该方法能够在一定程度上降低生成类集成测试序列所需的测试桩代价。 展开更多
关键词 类集成测试序列 深度强化学习 图卷积神经网络 测试桩 测试桩复杂度
在线阅读 下载PDF
粤港澳大湾区并发复合灾害敏感性评估
6
作者 徐峥辉 王伟 +1 位作者 宋月 黄莉 《河海大学学报(自然科学版)》 北大核心 2025年第4期99-107,共9页
为精确评估粤港澳大湾区并发复合灾害的敏感性,构建了崩塌滑坡并发复合灾害敏感性评价指标体系,同时建立并推导了考虑并发复合灾害空间维度叠加效应的敏感性评估模型。结果表明:粤港澳大湾区滑坡崩塌并发复合灾害高敏感区在怀集县、封... 为精确评估粤港澳大湾区并发复合灾害的敏感性,构建了崩塌滑坡并发复合灾害敏感性评价指标体系,同时建立并推导了考虑并发复合灾害空间维度叠加效应的敏感性评估模型。结果表明:粤港澳大湾区滑坡崩塌并发复合灾害高敏感区在怀集县、封开县等湾区西北部地区和龙岗区、惠城区等湾区东北部地区集中分布,低敏感区在三水区、南海区等湾区中部地区和台山市、恩平市等湾区西南部地区集中分布,较高敏感区、中敏感区、较低敏感区主要作为过渡区零星散布于高、低敏感区之间。 展开更多
关键词 并发复合灾害 敏感性 滑坡崩塌 评估模型 卷积神经网络 粤港澳大湾区
在线阅读 下载PDF
基于多维复向特征融合与CNN-GRU的转子不平衡量识别方法
7
作者 王坚坚 廖与禾 +1 位作者 杨磊 薛久涛 《中国机械工程》 北大核心 2025年第9期1905-1915,共11页
现有的无试重不平衡量识别算法采用优化算法框架,通过大量迭代运算以逐步逼近最优解,这类策略普遍收敛速度迟缓且易陷入局部极值。为此,利用神经网络直接学习并解析不平衡振动响应与不平衡量之间的复杂映射关系,进而实现不平衡量的高精... 现有的无试重不平衡量识别算法采用优化算法框架,通过大量迭代运算以逐步逼近最优解,这类策略普遍收敛速度迟缓且易陷入局部极值。为此,利用神经网络直接学习并解析不平衡振动响应与不平衡量之间的复杂映射关系,进而实现不平衡量的高精度识别。通过转子动力学模型进行仿真,构建了带标签的足量不平衡振动数据集。针对不平衡数据的多维复向特性,设计了一种特征融合机制。核心算法层面,结合卷积神经网络(CNN)与门控循环单元(GRU)构建了CNN-GRU混合模型,其中,CNN部分负责从振动数据中提取局部空间特征,GRU负责捕捉振动数据中的时序依赖关系,通过整合空间与时间域的信息,显著增强了模型的泛化能力和识别精度。测试集数据和实验台实验的不平衡量识别结果表明,所提方法可以准确预估识别转子的不平衡量,为无试重现场动平衡提供迅速准确的指导。 展开更多
关键词 转子 无试重 不平衡量识别 卷积神经网络-门控循环单元 多维复向特征融合
在线阅读 下载PDF
基于PSO-ChOA优化的轴流风机故障诊断模型
8
作者 吕亚楠 赵康 +1 位作者 马草原 郑璐 《机电工程》 北大核心 2025年第2期373-386,共14页
传统的风机故障诊断技术依赖大量的历史数据,在参数优化和算法选择上存在早熟收敛问题,且在风机故障诊断过程中需要精确采集信号,但实际应用中受限于传感器安装条件,影响了数据的准确性和诊断的有效性。针对这些问题,提出了一种融合改... 传统的风机故障诊断技术依赖大量的历史数据,在参数优化和算法选择上存在早熟收敛问题,且在风机故障诊断过程中需要精确采集信号,但实际应用中受限于传感器安装条件,影响了数据的准确性和诊断的有效性。针对这些问题,提出了一种融合改进粒子群优化算法(PSO)与黑猩猩优化算法(ChOA)混合优化策略(PSO-ChOA)的VMD-CNN-Transformer模型,应用于轴流风机故障诊断。首先,通过仿真和实验获取了七种风机典型电气故障信号和三种离心风机轴承故障信号,并进行了预处理以满足算法训练要求;然后,使用PSO对ChOA的狩猎搜索阶段进行了优化,减少了人为设定参数对模型训练的影响,通过构建23个标准测试函数,分析了PSO-ChOA算法在收敛速度和全局优化上的优势;最后,利用变分模态分解(VMD)提取了故障特征,并利用卷积神经网络-Transformer(CNN-Transformer)模型进行了分类,采用实例分析了该模型在处理非线性和高维数据时的强大能力。研究结果表明:相较于传统算法,PSO-ChOA算法在收敛速度上的优势显著,能够更快地跳出局部最优,避免早熟收敛,同时保持较高的搜索精度,最终找到更接近全局最优的解;采用PSO-ChOA优化的VMD-CNN-Transformer模型在风机故障诊断任务中达到了97.76%的准确率,较VMD-CNN-Transformer方法,准确率提升了6.64%;PSO-ChOA在参数优化领域的应用潜力,为工业设备故障诊断研究提供了新的视角。 展开更多
关键词 离心式风机 复杂非线性信号 粒子群优化 黑猩猩优化算法 卷积神经网络-Transformer模型 变分模态分解
在线阅读 下载PDF
基于类时空间图卷积的心脑血管病死亡率预测
9
作者 王晨舒 刘志锋 《计算机应用与软件》 北大核心 2025年第6期100-108,共9页
现有临床预测模型难以有效利用含有大量缺失值的医疗记录数据,且往往仅考虑单个患者的时间序列信息,忽略同类患者特征之间的潜在联系。针对上述问题,提出一种类时空图卷积临床预测模型BSim-STGCN。该模型设计了全局缺失信息捕获机制以... 现有临床预测模型难以有效利用含有大量缺失值的医疗记录数据,且往往仅考虑单个患者的时间序列信息,忽略同类患者特征之间的潜在联系。针对上述问题,提出一种类时空图卷积临床预测模型BSim-STGCN。该模型设计了全局缺失信息捕获机制以获取缺失值在整条时间序列下的当前缺失表示;此外,提出基于患者相似度的类空间图卷积Spatial-like GCN建模相似患者之间特征的类空间依赖关系。两个真实数据集的实验表明,BSim-STGCN模型的预测精度优于其他临床预测模型。 展开更多
关键词 心脑血管疾病 缺失值处理 患者相似度 图卷积神经网络 死亡率预测
在线阅读 下载PDF
SSFYOLO:一种面向复杂森林场景的树干检测算法 被引量:1
10
作者 杨灿 范习健 张九于 《北京林业大学学报》 北大核心 2025年第2期132-142,共11页
【目的】因为在复杂环境下树干目标尺寸差距大且易受遮挡,所以树干检测容易出现漏检、错检等问题。为有效解决这个问题,提出一种基于单阶段目标检测框架的树干检测算法SSFYOLO。【方法】首先,设计了空间感知网络模块SAM。SAM模块能够高... 【目的】因为在复杂环境下树干目标尺寸差距大且易受遮挡,所以树干检测容易出现漏检、错检等问题。为有效解决这个问题,提出一种基于单阶段目标检测框架的树干检测算法SSFYOLO。【方法】首先,设计了空间感知网络模块SAM。SAM模块能够高效处理多尺度和多分辨率的特征信息,在保证计算效能的同时,实现对各类特征的充分整合与精确提取,提高目标检测的准确性和效率。其次,设计多尺度特征增强自适应网FastScaleNet,用于替代YOLO模型中的C2f结构。FastScaleNet通过更为精细的多尺度特征融合与优化,并且利用跳跃连接和特征融合策略,有效保留不同层次的特征信息,增强模型对不同尺度目标的表达能力,提升模型的稳健性和广泛适用性。最后,引入加权IoU(WIoU)机制,实现对小目标损失权重的动态优化。WIoU机制根据目标尺寸的不同,动态调整损失权重,使模型在面对小尺寸目标时,能够灵活调整参数,从而灵活适应不同尺寸目标的检测需求,进一步提高小目标检测的准确性和鲁棒性。【结果】对复杂场景下树干数据集进行检测实验,与主流检测算法YOLOv8相比,SSFYOLO算法在缩小参数量的同时,具有更好的检测精度,其参数量减少了20%,平均精度均值(mAP)和召回率分别提升了1.6和0.7个百分点。【结论】本研究设计了面向复杂森林场景的树干检测算法SSFYOLO。SSFYOLO算法在复杂环境树干检测中表现出色,具有广阔的应用前景。 展开更多
关键词 目标检测 深度学习 深度卷积神经网络 特征提取 计算机视觉 树干检测 复杂场景
在线阅读 下载PDF
K-Means聚类算法下复杂花纹织物图像瑕疵检测方法
11
作者 邵煜涵 杨昊 刘文良 《毛纺科技》 北大核心 2025年第5期137-143,共7页
为了实现对复杂花纹织物图像的精准瑕疵检测,解决现有方法在复杂花纹织物图像上表现不佳的问题,设计K-Means聚类算法下复杂花纹织物图像瑕疵检测方法。使用双边滤波器对复杂花纹织物图像实施平滑处理,以消除潜在的噪声和干扰。为克服K-M... 为了实现对复杂花纹织物图像的精准瑕疵检测,解决现有方法在复杂花纹织物图像上表现不佳的问题,设计K-Means聚类算法下复杂花纹织物图像瑕疵检测方法。使用双边滤波器对复杂花纹织物图像实施平滑处理,以消除潜在的噪声和干扰。为克服K-Means聚类算法的局限性,提出结合区域合并策略与改进K-Means预分割技术的彩色图像分割方法实施复杂花纹织物图像的分割处理,将疵点区域从织物的复杂纹理背景中区分出来。针对复杂花纹织物图像特有的复杂纹理背景以及显著的瑕疵形态差异,结合深度卷积神经网络与深度残差网络CrossNet,实现各种瑕疵的检测。实验结果表明:本文方法在复杂纹理特征提取方面表现优异,在缺经、缺纬、吊经、污点、破洞5种瑕疵类型上展现出优势,阳性预测值(PPV)均高于0.9。 展开更多
关键词 双边滤波器 K-Means预分割技术 复杂花纹 织物图像 深度卷积神经网络 瑕疵检测
在线阅读 下载PDF
基于知识蒸馏的卷积神经网络压缩方法 被引量:1
12
作者 郑筠 高朋 《沈阳工业大学学报》 北大核心 2025年第3期348-354,共7页
【目的】卷积神经网络作为深度学习领域的一项重要技术,在图像识别、目标检测、自然语言处理等多个领域展现出了卓越的性能。然而,随着模型深度和复杂度的增加,卷积神经网络模型的大小和计算需求也急剧上升,这为模型的部署和实时应用提... 【目的】卷积神经网络作为深度学习领域的一项重要技术,在图像识别、目标检测、自然语言处理等多个领域展现出了卓越的性能。然而,随着模型深度和复杂度的增加,卷积神经网络模型的大小和计算需求也急剧上升,这为模型的部署和实时应用提出了严峻挑战。【方法】为减少神经网络的大小和计算量,并提高模型的效率和可部署性,提出了基于知识蒸馏的卷积神经网络压缩方法。通过将大型复杂模型(教师网络模型)中的知识转移给小型精简模型(学生网络模型)来实现模型的压缩和加速,本文建立了性能优异的教师网络和结构更简单、参数更少的学生网络。教师网络负责提供丰富的特征表示和准确的预测结果,学生网络则通过学习教师网络行为来逼近其性能。使用标准损失函数,并通过反向传播算法迭代更新其参数,确保其在训练数据集上达到良好的性能。采用改进知识蒸馏方法获取综合阈值函数,评估教师网络和学生网络之间的知识差异,并指导学生网络的学习过程。在训练过程中,学生网络利用综合阈值函数进行监督,逐步逼近教师网络的输出,同时保持较小的模型结构和计算复杂度,从而实现了卷积神经网络的压缩处理。【结果】实验结果表明:本文方法在ImageNet和Labelme数据集上均表现出较好的模型压缩效果。其中,本文方法在压缩前后卷积神经网络输出结果的拟合度较高,表明学生网络成功学到了教师网络的关键特征;交叉熵损失值较低,在1.0左右,进一步验证了其良好的预测性能;完成卷积神经网络模型的压缩时间较短,为79.8~89.4 s,表明本文方法具有较高的计算效率。【结论】由以上结果可知,基于知识蒸馏卷积神经网络压缩方法能够有效减小模型结构、降低计算量,并保持甚至提升了模型的性能。本文方法不仅为模型压缩提供了一种新的思路,还为深度学习模型的部署和应用提供了有力支持。此外,本文方法在知识蒸馏方法上进行了改进,通过引入综合阈值函数来更全面地评估和指导模型的学习过程,在一定程度上提升了知识蒸馏的效果和效率。因此,本文方法不仅具有理论价值,还具有重要的实践意义。 展开更多
关键词 卷积神经网络压缩 改进知识蒸馏方法 判别器 学生网络 教师网络 标准损失函数 综合阈值函数 交叉熵损失值
在线阅读 下载PDF
基于集成学习和卷积神经网络的电网客服短期话务量预测
13
作者 覃浩 苏立伟 +5 位作者 伍广斌 蒋崇颖 徐智鹏 康峰 谭火超 张勇军 《上海交通大学学报》 北大核心 2025年第2期266-273,共8页
现代供电服务体系对用电客户服务的服务质量提出更高要求,精准的供电服务话务量预测不仅可以提高用电客户服务质量,还能有效降低客服人员成本.为此,基于集成学习和卷积神经网络提出一种电网短期话务量预测方法.首先,采用孤立森林算法进... 现代供电服务体系对用电客户服务的服务质量提出更高要求,精准的供电服务话务量预测不仅可以提高用电客户服务质量,还能有效降低客服人员成本.为此,基于集成学习和卷积神经网络提出一种电网短期话务量预测方法.首先,采用孤立森林算法进行异常数据识别,建立拉格朗日插值函数对异常数据或缺失数据进行修补;其次,利用层次分析法量化用户信息、气象信息和停电信息,采用灰色关联法分析话务量的影响因子,将影响因子作为话务量预测模型输入;然后,构建自适应增强(Adaboost)算法集成多个卷积神经网络(CNN)模型,提出一种Adaboost-CNN的话务量预测模型;最后,考虑供电服务系统增值服务,对预测结果进行修正,得到最终的话务量预测值.算例分析表明,所提预测模型较单一预测模型误差平均减少11.05个百分点、较组合预测模型误差平均减少5.32个百分点,具有更好的预测精度. 展开更多
关键词 现代供电服务体系 话务量预测 ADABOOST算法 卷积神经网络 孤立森林算法 增值服务
在线阅读 下载PDF
双基SAR空时自适应ANM-ADMM-Net杂波抑制技术 被引量:1
14
作者 李中余 皮浩卓 +3 位作者 李俊奥 杨青 武俊杰 杨建宇 《雷达学报(中英文)》 北大核心 2025年第5期1196-1214,共19页
双基合成孔径雷达(BiSAR)在实现对地面运动目标检测和成像时,需要抑制地面背景杂波。然而由于双基SAR收发分置的空间构型,会导致主瓣杂波出现严重的空时非平稳问题,从而恶化杂波抑制性能。基于稀疏恢复空时自适应处理方法(SR-STAP)虽然... 双基合成孔径雷达(BiSAR)在实现对地面运动目标检测和成像时,需要抑制地面背景杂波。然而由于双基SAR收发分置的空间构型,会导致主瓣杂波出现严重的空时非平稳问题,从而恶化杂波抑制性能。基于稀疏恢复空时自适应处理方法(SR-STAP)虽然可以通过降低样本数量减少非平稳的影响,但是在处理过程中会出现字典离网问题,从而导致空时谱估计效果下降。并且大部分现有的典型SR-STAP方法虽然具有明确的数学关系和可解释性,但在针对复杂、多变场景时,也存在参数设置不恰当、运算复杂等问题。为解决上述一系列问题,该文提出了一种适用于双基SAR空时自适应杂波抑制处理的基于交替方向乘子法(ADMM)的复值神经网络ANM-ADMM-Net。首先,基于原子范数最小化(ANM)构建双基SAR连续空时域下杂波谱的稀疏恢复模型,克服传统离散字典模型下的离网问题;其次,采取ADMM对该双基SAR杂波谱稀疏恢复模型进行快速迭代求解;然后,根据迭代流程和数据流图进行网络化处理,将人工超参数迭代过程转换为网络可学习的ANM-ADMM-Net;再次,设置归一化均方根误差网络损失函数,并利用获取的数据集对网络模型进行训练;最后,利用训练后的ANM-ADMM-Net网络架构对双基SAR回波数据进行快速迭代处理,从而完成双基SAR杂波空时谱的精确估计和高效抑制。该文通过仿真试验和实测数据处理,表明该方法具有更好的杂波抑制性能和更加高效的运算效率。 展开更多
关键词 双基合成孔径雷达(BiSAR) 稀疏恢复 空时处理 杂波抑制 复值神经网络
在线阅读 下载PDF
基于TFG-SVD-1DCNN的液压优先阀智能故障诊断方法
15
作者 何瑶 熊晓燕 +2 位作者 王伟杰 李翔宇 刘会军 《机电工程》 北大核心 2025年第7期1287-1293,共7页
液压优先阀连接在液压泵、蓄能器和油箱增压腔之间,针对其容易受到多路干扰的影响,以及采用传统的液压测试方法对优先阀故障识别精度不足的问题,提出了一种基于时频图结构数据奇异值分解与一维卷积神经网络(TFG-SVD-1DCNN)的液压阀智能... 液压优先阀连接在液压泵、蓄能器和油箱增压腔之间,针对其容易受到多路干扰的影响,以及采用传统的液压测试方法对优先阀故障识别精度不足的问题,提出了一种基于时频图结构数据奇异值分解与一维卷积神经网络(TFG-SVD-1DCNN)的液压阀智能故障诊断方法。首先,采用短时傅里叶变换(STFT)的方法分析了包含故障信息的信号,提取了信号在不同时间段内频率成分的详细信息,得到了时频矩阵;然后,使用时频矩阵在频率维度上的特征构造了图结构数据(GSD),获得了边的连接关系和边的权重等信息,再利用这些信息生成了图结构数据的邻接矩阵,充分保留了每个样本的空间特征;最后,采用奇异值分解(SVD)方法对图结构数据的邻接矩阵进行了降维,将降维之后的主要特征输入到一维卷积神经网络(1D-CNN)中进行了故障分类,并利用仿真数据验证了该方法在优先阀故障诊断方面的性能。研究结果表明:对于优先阀正向无法打开或关断以及反向无法打开或关断4种故障类型,采用智能故障诊断方法所得的平均准确率为99.7%。该研究可以为液压阀故障检测提供一种有效的方法。 展开更多
关键词 液压系统 液压阀 流量优先阀 时频图结构数据奇异值分解 一维卷积神经网络 短时傅里叶变换 图结构数据
在线阅读 下载PDF
基于深度复数网络的城市自来水管道泄漏检测的降噪方法
16
作者 陈双叶 申宇杰 +4 位作者 任东杰 吕超 石晓川 张智武 张玥一 《北京工业大学学报》 北大核心 2025年第9期1043-1052,共10页
针对使用基于声信号的方法在城市环境下进行自来水管道泄漏检测和定位时,传统降噪方法需要手工设置固定的阈值,并且无法适用于信号和噪声频带重叠的情况,提出一种基于深度复数网络模块的降噪方法。该方法将信号变换到时频域中,同时,利... 针对使用基于声信号的方法在城市环境下进行自来水管道泄漏检测和定位时,传统降噪方法需要手工设置固定的阈值,并且无法适用于信号和噪声频带重叠的情况,提出一种基于深度复数网络模块的降噪方法。该方法将信号变换到时频域中,同时,利用其模值和相位信息自动学习信号和噪声的特征,输出一个自适应掩膜用来估计干净信号的频谱,再将其变换回时域,从而实现降噪功能。结果表明,该方法与现有的自适应降噪方法相比,降噪后的音频在提升尺度不变的信噪比(scale-invariant source-to-noise ratio,SI-SNR)、泄漏音频分类准确率及减小泄漏点定位的误差方面都取得了更好的效果。 展开更多
关键词 泄漏检测 漏点定位 城市噪声 深度学习 复数网络 卷积神经网络
在线阅读 下载PDF
CVNN-TMN:基于Mixup增强的少样本特定辐射源识别方法
17
作者 胡治隆 谭伟杰 牛坤 《贵州师范大学学报(自然科学版)》 北大核心 2025年第5期66-75,共10页
特定辐射源识别(Specific emitter identification,SEI)通过分析设备信号硬件特征保障物联网数据安全。现有的深度学习方法在进行特定辐射源识别时,样本数量受限,过于依赖大量已标记样本,无法做到高区分度表征,存在识别性能差的问题。... 特定辐射源识别(Specific emitter identification,SEI)通过分析设备信号硬件特征保障物联网数据安全。现有的深度学习方法在进行特定辐射源识别时,样本数量受限,过于依赖大量已标记样本,无法做到高区分度表征,存在识别性能差的问题。针对这些问题,提出了基于样本插值(Mixup)增强的少样本SEI方法。首先采用Mixup的增强方式来扩展无线电信号样本的数量解决标注样本不足的问题;其次,基于孪生神经网络与复数神经网络(Complex-valued neural networks,CVNN)构建变体三元组网络(Triplet margin network based on CVNN,CVNN-TMN)提高模型的泛化能力和区分度,实现了少样本场景下特定辐射源的精准识别。实验结果表明,与现有多种先进SEI方法对比,在训练集和测试集样本划分比例不同情况下,提出的CVNN-TMN识别精度整体有5%~30%的提升,表明所构建的CVNN-TMN模型在区分度上的优异表现。 展开更多
关键词 特定辐射源识别 少样本学习 Mixup 复数神经网络 三元组损失
在线阅读 下载PDF
基于主干网络浅深层特征的无人机海上分割算法
18
作者 沈昊 葛泉波 吴高峰 《智能系统学报》 北大核心 2025年第3期605-620,共16页
为提高复杂海洋环境中无人机自主降落时分割目标的实时性和精确性,研究主干网络和浅深层特征对分割算法性能的影响问题,基于DeepLabV3+框架建立一种基于主干网络浅深层特征的无人机海上分割(shallow and deep features of backbone,SDFB... 为提高复杂海洋环境中无人机自主降落时分割目标的实时性和精确性,研究主干网络和浅深层特征对分割算法性能的影响问题,基于DeepLabV3+框架建立一种基于主干网络浅深层特征的无人机海上分割(shallow and deep features of backbone,SDFB)算法。首先,针对风浪扰动降低目标稳定性的问题,优化MobileNetV2结构提出一种特征提取方法,解决了算法无法处理短时间目标变化较大图像的问题;然后,针对深层特征输出通道数较多且存在不均匀分布大气湍流噪声的问题,利用本地全局信息选择性地聚合特征,提出一种特征筛选机制,剔除冗余通道的同时解决了算法对环境噪声敏感度高的问题;其次,针对光照不匀降低目标边界清晰度问题,从浅层空间维度和深层通道维度中提取轮廓信息建立一种并行轮廓学习机制,解决了算法利用轮廓特征效率低的问题;最后,针对障碍物遮挡破坏目标特征完整性问题,融合优化后的条带池化建立一种特征融合机制,解决了算法无法联系离散分布特征问题。实验表明,SDFB算法的实时性和精确性均高于其他算法,能够更好地适应海上场景无人机分割目标需求。 展开更多
关键词 复杂海上场景 语义分割 无人机降落 船舶目标 DeepLabV3+ 注意力机制 深度学习 卷积神经网络
在线阅读 下载PDF
基于谐振区回波的复数神经网络雷达目标识别方法
19
作者 邬苏秦 朱卫纲 +2 位作者 王府圣 史怡宁 李永刚 《电光与控制》 北大核心 2025年第6期69-74,共6页
针对现有雷达目标识别方案对谐振区回波利用率不高的问题,提出了一种基于谐振区回波的复数神经网络雷达目标识别方法。复数神经网络既能改善人为提取极点特征过程中的数据损失问题,实现对谐振区回波中特征的自动提取,又能够兼顾数据实... 针对现有雷达目标识别方案对谐振区回波利用率不高的问题,提出了一种基于谐振区回波的复数神经网络雷达目标识别方法。复数神经网络既能改善人为提取极点特征过程中的数据损失问题,实现对谐振区回波中特征的自动提取,又能够兼顾数据实部和虚部间的内在耦合关系。分别将人为提取的极点特征、实数卷积神经网络与复数神经网络提取的目标特征输入到KNN、SVM中进行对比,实验结果证明了所提方法的有效性,在信噪比为-5 dB的情况下仍能达到98.5%以上的识别准确率,相比于现有方案提升了对目标的识别精度。 展开更多
关键词 复数神经网络 谐振区回波 雷达目标识别 特征提取 极点特征
在线阅读 下载PDF
相近色干扰下大型变电站玻璃绝缘子目标识别算法
20
作者 陈赟 张英 +1 位作者 李端姣 刘建明 《沈阳工业大学学报》 北大核心 2025年第4期478-485,共8页
【目的】在大型变电站监控系统中,玻璃绝缘子的目标识别是确保电力设备安全运行的重要环节。然而,受环境复杂性和图像采集条件的限制,玻璃绝缘子图像往往存在清晰度差、相近色干扰等问题,导致目标识别困难,直接影响变电站的安全监控效... 【目的】在大型变电站监控系统中,玻璃绝缘子的目标识别是确保电力设备安全运行的重要环节。然而,受环境复杂性和图像采集条件的限制,玻璃绝缘子图像往往存在清晰度差、相近色干扰等问题,导致目标识别困难,直接影响变电站的安全监控效果。【方法】为了解决这一问题,提出一种相近色干扰下大型变电站玻璃绝缘子目标识别算法。针对图像清晰度不足和相近色干扰问题,将原始图像从RGB空间转换为HSV空间。通过精细分解HSV空间的色相H、饱和度S和亮度V分量,计算特征差值,增强图像的色彩表现和视觉效果,从而有效消除相近色干扰。采用自适应阈值分割技术,结合HSV空间的色彩特征,对图像进行精确分割,分离出玻璃绝缘子目标区域与复杂背景。设计了一种双尺度分类卷积神经网络(CNN),通过多尺度特征提取和分类,实现对复杂背景下玻璃绝缘子的高精度目标识别。该网络结合了局部细节和全局上下文信息,进一步提升了识别的鲁棒性和准确性。【结果】实验结果表明,研究提出的算法应用优势显著。在色彩增强方面,通过HSV空间的特征差值计算,显著提升了图像的色彩对比度和视觉效果,有效消除了相近色干扰。在图像分割性能上,自适应阈值分割技术能够精确分离玻璃绝缘子目标区域与复杂背景,分割准确性达到较高水平。在目标识别方面,双尺度分类卷积神经网络在复杂背景下表现出较强的抗干扰能力,对玻璃绝缘子的识别精度显著高于传统方法。【结论】研究提出的相近色干扰下大型变电站玻璃绝缘子目标识别算法,通过色彩增强、自适应阈值分割和双尺度分类卷积神经网络的有机结合,成功解决了图像清晰度不足和相近色干扰导致的目标识别难题。该算法在色彩增强、分割性能和抗干扰能力上均表现出色,能够高效、准确地识别玻璃绝缘子目标,为大型变电站的安全监控提供了可靠的技术保障。 展开更多
关键词 相近色干扰 大型变电站 复杂背景 玻璃绝缘子 目标识别 自适应阈值分割 色彩增强 双尺度分类卷积神经网络
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部