On-machine measurement(OMM)stands out as a pivotal technology in complex curved surface adaptive machining.However,the complex structure inherent in workpieces poses a significant challenge as the stylus orientation f...On-machine measurement(OMM)stands out as a pivotal technology in complex curved surface adaptive machining.However,the complex structure inherent in workpieces poses a significant challenge as the stylus orientation frequently shifts during the measurement process.Consequently,a substantial amount of time is allocated to calibrating pre-travel error and probe movement.Furthermore,the frequent movement of machine tools also increases the influence of machine errors.To enhance both accuracy and efficiency,an optimization strategy for the OMM process is proposed.Based on the kinematic chain of the machine tools,the relationship between the angle combination of rotary axes,the stylus orientation,and the calibration position of pre-travel error is disclosed.Additionally,an OMM efficiency optimization model for complex curved surfaces is developed.This model is solved to produce the optimal efficiency angle combinations for each to-be-measured point.Within each angle combination,the effects of positioning errors on measurement results are addressed by coordinate system offset and measurement result compensation method.Finally,the experiments on an impeller are used to demonstrate the practical utility of the proposed method.展开更多
A novel optimization algorithm called stochastic focusing search (SFS) for the real-parameter optimization is proposed. The new algorithm is a swarm intelligence algorithm, which is based on simulating the act of hu...A novel optimization algorithm called stochastic focusing search (SFS) for the real-parameter optimization is proposed. The new algorithm is a swarm intelligence algorithm, which is based on simulating the act of human randomized searching, and the human searching behaviors. The algorithm's performance is studied using a challenging set of typically complex functions with comparison of differential evolution (DE) and three modified particle swarm optimization (PSO) algorithms, and the simulation results show that SFS is competitive to solve most parts of the benchmark problems and will become a promising candidate of search algorithms especially when the existing algorithms have some difficulties in solving certain problems.展开更多
Minimizing the impact of the mixed uncertainties(i.e.,the aleatory uncertainty and the epistemic uncertainty) for a complex product of compliant mechanism(CPCM) quality improvement signifies a fascinating research top...Minimizing the impact of the mixed uncertainties(i.e.,the aleatory uncertainty and the epistemic uncertainty) for a complex product of compliant mechanism(CPCM) quality improvement signifies a fascinating research topic to enhance the robustness.However, most of the existing works in the CPCM robust design optimization neglect the mixed uncertainties, which might result in an unstable design or even an infeasible design. To solve this issue, a response surface methodology-based hybrid robust design optimization(RSM-based HRDO) approach is proposed to improve the robustness of the quality characteristic for the CPCM via considering the mixed uncertainties in the robust design optimization. A bridge-type amplification mechanism is used to manifest the effectiveness of the proposed approach. The comparison results prove that the proposed approach can not only keep its superiority in the robustness, but also provide a robust scheme for optimizing the design parameters.展开更多
In this paper,crashworthiness performance of multi-cell conical tubes with new sectional configuration design(i.e.square,hexagonal,octagonal,decagon and circular)has been evaluated under axial and three different obli...In this paper,crashworthiness performance of multi-cell conical tubes with new sectional configuration design(i.e.square,hexagonal,octagonal,decagon and circular)has been evaluated under axial and three different oblique loads.The same weight conical tubes were comparatively studied using an experimentally validated finite element model generated in LS-DYNA.Complex proportional assessment(COPRAS)method was then employed to select the most efficient tube using two conflicting criteria,namely peak collapse force(PCF)and energy absorption(EA).From the COPRAS calculations,the multi-cell conical tube with decagonal cross-section(MCDT)showed the best crashworthiness performance.Furthermore,the effects of possible number of inside ribs on the crashworthiness of the decagonal conical tubes were also evaluated,and the results displayed that the tubes performed better as the number of ribs increased.Finally,parameters(the cone angle,θ,and ratio of the internal tube size to the external one,S)of MCDT were optimized by adopting artificial neural networks(ANN)and genetic algorithm(GA)techniques.Based on the multi-objective optimization results,the optimum dimension parameters were found to beθ=7.9o,S=0.46 andθ=8o,S=0.74 from the minimum distance selection(MDS)and COPRAS methods,respectively.展开更多
A new searching algorithm named the annealing-genetic algorithm(AGA) was proposed by skillfully merging GA with SAA. It draws on merits of both GA and SAA ,and offsets their shortcomings.The difference from GA is that...A new searching algorithm named the annealing-genetic algorithm(AGA) was proposed by skillfully merging GA with SAA. It draws on merits of both GA and SAA ,and offsets their shortcomings.The difference from GA is that AGA takes objective function as adaptability function directly,so it cuts down some unnecessary time expense because of float-point calculation of function conversion.The difference from SAA is that AGA need not execute a very long Markov chain iteration at each point of temperature, so it speeds up the convergence of solution and makes no assumption on the search space,so it is simple and easy to be implemented.It can be applied to a wide class of problems.The optimizing principle and the implementing steps of AGA were expounded. The example of the parameter optimization of a typical complex electromechanical system named temper mill shows that AGA is effective and superior to the conventional GA and SAA.The control system of temper mill optimized by AGA has the optimal performance in the adjustable ranges of its parameters.展开更多
Camouflaged people are extremely expert in actively concealing themselves by effectively utilizing cover and the surrounding environment. Despite advancements in optical detection capabilities through imaging systems,...Camouflaged people are extremely expert in actively concealing themselves by effectively utilizing cover and the surrounding environment. Despite advancements in optical detection capabilities through imaging systems, including spectral, polarization, and infrared technologies, there is still a lack of effective real-time method for accurately detecting small-size and high-efficient camouflaged people in complex real-world scenes. Here, this study proposes a snapshot multispectral image-based camouflaged detection model, multispectral YOLO(MS-YOLO), which utilizes the SPD-Conv and Sim AM modules to effectively represent targets and suppress background interference by exploiting the spatial-spectral target information. Besides, the study constructs the first real-shot multispectral camouflaged people dataset(MSCPD), which encompasses diverse scenes, target scales, and attitudes. To minimize information redundancy, MS-YOLO selects an optimal subset of 12 bands with strong feature representation and minimal inter-band correlation as input. Through experiments on the MSCPD, MS-YOLO achieves a mean Average Precision of 94.31% and real-time detection at 65 frames per second, which confirms the effectiveness and efficiency of our method in detecting camouflaged people in various typical desert and forest scenes. Our approach offers valuable support to improve the perception capabilities of unmanned aerial vehicles in detecting enemy forces and rescuing personnel in battlefield.展开更多
In solving small- to medium-scale travelling salesman problems (TSPs) of both symmetric and asymmetric types, the traditional ant colony optimization (ACO) algorithm could work well, providing high accuracy and sa...In solving small- to medium-scale travelling salesman problems (TSPs) of both symmetric and asymmetric types, the traditional ant colony optimization (ACO) algorithm could work well, providing high accuracy and satisfactory efficiency. However, when the scale of the TSP increases, ACO, a heuristic algorithm, is greatly challenged with respect to accuracy and efficiency. A novel pheromone-trail updating strategy that moderately reduces the iteration time required in real optimization problem-solving is proposed. In comparison with the traditional strategy of the ACO in several experiments, the proposed strategy shows advantages in performance. Therefore, this strategy of pheromone-trail updating is proposed as a valuable approach that reduces the time-complexity and increases its efficiency with less iteration time in real optimization applications. Moreover, this strategy is especially applicable in solving the moderate large-scale TSPs based on ACO.展开更多
基金Projects(51775445,52175435)supported by the National Natural Science Foundation of ChinaProject(CX2023051)supported by the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China。
文摘On-machine measurement(OMM)stands out as a pivotal technology in complex curved surface adaptive machining.However,the complex structure inherent in workpieces poses a significant challenge as the stylus orientation frequently shifts during the measurement process.Consequently,a substantial amount of time is allocated to calibrating pre-travel error and probe movement.Furthermore,the frequent movement of machine tools also increases the influence of machine errors.To enhance both accuracy and efficiency,an optimization strategy for the OMM process is proposed.Based on the kinematic chain of the machine tools,the relationship between the angle combination of rotary axes,the stylus orientation,and the calibration position of pre-travel error is disclosed.Additionally,an OMM efficiency optimization model for complex curved surfaces is developed.This model is solved to produce the optimal efficiency angle combinations for each to-be-measured point.Within each angle combination,the effects of positioning errors on measurement results are addressed by coordinate system offset and measurement result compensation method.Finally,the experiments on an impeller are used to demonstrate the practical utility of the proposed method.
基金supported by the Doctor Students Innovation Foundation of Southwest Jiaotong University.
文摘A novel optimization algorithm called stochastic focusing search (SFS) for the real-parameter optimization is proposed. The new algorithm is a swarm intelligence algorithm, which is based on simulating the act of human randomized searching, and the human searching behaviors. The algorithm's performance is studied using a challenging set of typically complex functions with comparison of differential evolution (DE) and three modified particle swarm optimization (PSO) algorithms, and the simulation results show that SFS is competitive to solve most parts of the benchmark problems and will become a promising candidate of search algorithms especially when the existing algorithms have some difficulties in solving certain problems.
基金supported by the National Natural Science Foundation of China(71702072 71811540414+2 种基金 71573115)the Natural Science Foundation for Jiangsu Institutions(BK20170810)the Ministry of Education of Humanities and Social Science Planning Fund(18YJA630008)
文摘Minimizing the impact of the mixed uncertainties(i.e.,the aleatory uncertainty and the epistemic uncertainty) for a complex product of compliant mechanism(CPCM) quality improvement signifies a fascinating research topic to enhance the robustness.However, most of the existing works in the CPCM robust design optimization neglect the mixed uncertainties, which might result in an unstable design or even an infeasible design. To solve this issue, a response surface methodology-based hybrid robust design optimization(RSM-based HRDO) approach is proposed to improve the robustness of the quality characteristic for the CPCM via considering the mixed uncertainties in the robust design optimization. A bridge-type amplification mechanism is used to manifest the effectiveness of the proposed approach. The comparison results prove that the proposed approach can not only keep its superiority in the robustness, but also provide a robust scheme for optimizing the design parameters.
基金Project(660)supported by University of Mohaghegh Ardabili,Iran
文摘In this paper,crashworthiness performance of multi-cell conical tubes with new sectional configuration design(i.e.square,hexagonal,octagonal,decagon and circular)has been evaluated under axial and three different oblique loads.The same weight conical tubes were comparatively studied using an experimentally validated finite element model generated in LS-DYNA.Complex proportional assessment(COPRAS)method was then employed to select the most efficient tube using two conflicting criteria,namely peak collapse force(PCF)and energy absorption(EA).From the COPRAS calculations,the multi-cell conical tube with decagonal cross-section(MCDT)showed the best crashworthiness performance.Furthermore,the effects of possible number of inside ribs on the crashworthiness of the decagonal conical tubes were also evaluated,and the results displayed that the tubes performed better as the number of ribs increased.Finally,parameters(the cone angle,θ,and ratio of the internal tube size to the external one,S)of MCDT were optimized by adopting artificial neural networks(ANN)and genetic algorithm(GA)techniques.Based on the multi-objective optimization results,the optimum dimension parameters were found to beθ=7.9o,S=0.46 andθ=8o,S=0.74 from the minimum distance selection(MDS)and COPRAS methods,respectively.
文摘A new searching algorithm named the annealing-genetic algorithm(AGA) was proposed by skillfully merging GA with SAA. It draws on merits of both GA and SAA ,and offsets their shortcomings.The difference from GA is that AGA takes objective function as adaptability function directly,so it cuts down some unnecessary time expense because of float-point calculation of function conversion.The difference from SAA is that AGA need not execute a very long Markov chain iteration at each point of temperature, so it speeds up the convergence of solution and makes no assumption on the search space,so it is simple and easy to be implemented.It can be applied to a wide class of problems.The optimizing principle and the implementing steps of AGA were expounded. The example of the parameter optimization of a typical complex electromechanical system named temper mill shows that AGA is effective and superior to the conventional GA and SAA.The control system of temper mill optimized by AGA has the optimal performance in the adjustable ranges of its parameters.
基金support by the National Natural Science Foundation of China (Grant No. 62005049)Natural Science Foundation of Fujian Province (Grant Nos. 2020J01451, 2022J05113)Education and Scientific Research Program for Young and Middleaged Teachers in Fujian Province (Grant No. JAT210035)。
文摘Camouflaged people are extremely expert in actively concealing themselves by effectively utilizing cover and the surrounding environment. Despite advancements in optical detection capabilities through imaging systems, including spectral, polarization, and infrared technologies, there is still a lack of effective real-time method for accurately detecting small-size and high-efficient camouflaged people in complex real-world scenes. Here, this study proposes a snapshot multispectral image-based camouflaged detection model, multispectral YOLO(MS-YOLO), which utilizes the SPD-Conv and Sim AM modules to effectively represent targets and suppress background interference by exploiting the spatial-spectral target information. Besides, the study constructs the first real-shot multispectral camouflaged people dataset(MSCPD), which encompasses diverse scenes, target scales, and attitudes. To minimize information redundancy, MS-YOLO selects an optimal subset of 12 bands with strong feature representation and minimal inter-band correlation as input. Through experiments on the MSCPD, MS-YOLO achieves a mean Average Precision of 94.31% and real-time detection at 65 frames per second, which confirms the effectiveness and efficiency of our method in detecting camouflaged people in various typical desert and forest scenes. Our approach offers valuable support to improve the perception capabilities of unmanned aerial vehicles in detecting enemy forces and rescuing personnel in battlefield.
基金supported by the Fundamental Research Funds for the Central Universities(2015XZD15)the Soft Science Research Project of Guangdong Province(2015A070704015)+1 种基金the Guangdong Province Key Laboratory Open Foundation(2011A06090100101B)the Technology Trading System and Science&Technology Service Network Construction Project of Guangdong Province(2014A040402003)
文摘In solving small- to medium-scale travelling salesman problems (TSPs) of both symmetric and asymmetric types, the traditional ant colony optimization (ACO) algorithm could work well, providing high accuracy and satisfactory efficiency. However, when the scale of the TSP increases, ACO, a heuristic algorithm, is greatly challenged with respect to accuracy and efficiency. A novel pheromone-trail updating strategy that moderately reduces the iteration time required in real optimization problem-solving is proposed. In comparison with the traditional strategy of the ACO in several experiments, the proposed strategy shows advantages in performance. Therefore, this strategy of pheromone-trail updating is proposed as a valuable approach that reduces the time-complexity and increases its efficiency with less iteration time in real optimization applications. Moreover, this strategy is especially applicable in solving the moderate large-scale TSPs based on ACO.