A multi-objective intelligent coordinating optimization strategy based on qualitative and quantitative synthetic model for Pb-Zn sintering blending process was proposed to obtain optimal mixture ratio. The mechanism a...A multi-objective intelligent coordinating optimization strategy based on qualitative and quantitative synthetic model for Pb-Zn sintering blending process was proposed to obtain optimal mixture ratio. The mechanism and neural network quantitative models for predicting compositions and rule models for expert reasoning were constructed based on statistical data and empirical knowledge. An expert reasoning method based on these models were proposed to solve blending optimization problem, including multi-objective optimization for the first blending process and area optimization for the second blending process, and to determine optimal mixture ratio which will meet the requirement of intelligent coordination. The results show that the qualified rates of agglomerate Pb, Zn and S compositions are increased by 7.1%, 6.5% and 6.9%, respectively, and the fluctuation of sintering permeability is reduced by 7.0%, which effectively stabilizes the agglomerate compositions and the permeability.展开更多
Springback of a SUS321 complex geometry part formed by the multi-stage rigid-flexible compound process was studied through numerical simulations and laboratory experiments in this work.The sensitivity analysis was pro...Springback of a SUS321 complex geometry part formed by the multi-stage rigid-flexible compound process was studied through numerical simulations and laboratory experiments in this work.The sensitivity analysis was provided to have an insight in the effect of the evaluated process parameters.Furthermore,in order to minimize the springback problem,an accurate springback simulation model of the part was established and validated.The effects of the element size and timesteps on springback model were further investigated.Results indicate that the custom mesh size is beneficial for the springback simulation,and the four timesteps are found suited for the springback analysis for the complex geometry part.Finally,a strategy for reducing the springback by changing the geometry of the blank is proposed.The optimal blank geometry is obtained and used for manufacturing the part.展开更多
A mathematical mechanism model was proposed for the description and analysis of the heat-stirring-acid leaching process.The model is proved to be effective by experiment.Afterwards,the leaching problem was formulated ...A mathematical mechanism model was proposed for the description and analysis of the heat-stirring-acid leaching process.The model is proved to be effective by experiment.Afterwards,the leaching problem was formulated as a constrained multi-objective optimization problem based on the mechanism model.A two-stage guide multi-objective particle swarm optimization(TSG-MOPSO) algorithm was proposed to solve this optimization problem,which can accelerate the convergence and guarantee the diversity of pareto-optimal front set as well.Computational experiment was conducted to compare the solution by the proposed algorithm with SIGMA-MOPSO by solving the model and with the manual solution in practice.The results indicate that the proposed algorithm shows better performance than SIGMA-MOPSO,and can improve the current manual solutions significantly.The improvements of production time and economic benefit compared with manual solutions are 10.5% and 7.3%,respectively.展开更多
To design approximately linear-phase complex coefficient finite impulse response (FIR) digital filters with arbitrary magnitude and group delay responses, a novel neural network approach is studied. The approach is ...To design approximately linear-phase complex coefficient finite impulse response (FIR) digital filters with arbitrary magnitude and group delay responses, a novel neural network approach is studied. The approach is based on a batch back-propagation neural network algorithm by directly minimizing the real magnitude error and phase error from the linear-phase to obtain the filter's coefficients. The approach can deal with both the real and complex coefficient FIR digital filters design problems. The main advantage of the proposed design method is the significant reduction in the group delay error. The effectiveness of the proposed method is illustrated with two optimal design examples.展开更多
In order to effectively analyse the multivariate time series data of complex process,a generic reconstruction technology based on reduction theory of rough sets was proposed,Firstly,the phase space of multivariate tim...In order to effectively analyse the multivariate time series data of complex process,a generic reconstruction technology based on reduction theory of rough sets was proposed,Firstly,the phase space of multivariate time series was originally reconstructed by a classical reconstruction technology.Then,the original decision-table of rough set theory was set up according to the embedding dimensions and time-delays of the original reconstruction phase space,and the rough set reduction was used to delete the redundant dimensions and irrelevant variables and to reconstruct the generic phase space,Finally,the input vectors for the prediction of multivariate time series were extracted according to generic reconstruction results to identify the parameters of prediction model.Verification results show that the developed reconstruction method leads to better generalization ability for the prediction model and it is feasible and worthwhile for application.展开更多
This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network,...This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network, bootstrap aggregated neural networks are used to build reliable data based empirical models. Apart from improving the model generalisation capability, a bootstrap aggregated neural network can also provide model prediction confidence bounds. A reliable optimal control method by incorporating model prediction confidence bounds into the optimisation objective function is presented. A neural network based iterative learning control strategy is presented to overcome the problem due to unknown disturbances and model-plant mismatches. The proposed methods are demonstrated on a simulated batch polymerisation process.展开更多
针对干旱区水资源分配不合理的问题,以新疆开都河流域水资源为研究对象,以流域水-能源-生态综合收益最高为目标,建立水资源多目标优化配置模型,采用基于参考点的非支配排序进化算法(reference-point based many-objective,NSGA-Ⅲ)对模...针对干旱区水资源分配不合理的问题,以新疆开都河流域水资源为研究对象,以流域水-能源-生态综合收益最高为目标,建立水资源多目标优化配置模型,采用基于参考点的非支配排序进化算法(reference-point based many-objective,NSGA-Ⅲ)对模型进行求解。针对优化方案选择问题,以经济效益、社会效益和生态效益为准则层构建流域水资源最适配置方案评价指标体系,采用层次分析法对优化结果进行评价分析。结果表明:最适配置方案相较于传统配置方案,水库发电量增加5.83%,农业经济效益减少2.34%,生态效益提高40.08%;当地种植结构需进行适当调整,应增加玉米和西红柿的种植面积,减少小麦、棉花和辣椒的种植面积;博斯腾湖大湖和小湖水位均达到最适生态水位。研究成果可为当地制定水资源配置方案提供决策参考,有重要的理论意义和应用价值。展开更多
基金Project(2002CB312203) supported by the National Key Fundamental Research and Development Programof China pro-ject(60574030) supported bythe National Natural Science Foundation of China project(06FD026) supported bythe Natural Science Foun-dation of Hunan Province , China
文摘A multi-objective intelligent coordinating optimization strategy based on qualitative and quantitative synthetic model for Pb-Zn sintering blending process was proposed to obtain optimal mixture ratio. The mechanism and neural network quantitative models for predicting compositions and rule models for expert reasoning were constructed based on statistical data and empirical knowledge. An expert reasoning method based on these models were proposed to solve blending optimization problem, including multi-objective optimization for the first blending process and area optimization for the second blending process, and to determine optimal mixture ratio which will meet the requirement of intelligent coordination. The results show that the qualified rates of agglomerate Pb, Zn and S compositions are increased by 7.1%, 6.5% and 6.9%, respectively, and the fluctuation of sintering permeability is reduced by 7.0%, which effectively stabilizes the agglomerate compositions and the permeability.
基金Project(2014ZX04002041)supported by the National Science and Technology Major Project,ChinaProject(51175024)supported by the National Natural Science Foundation of China
文摘Springback of a SUS321 complex geometry part formed by the multi-stage rigid-flexible compound process was studied through numerical simulations and laboratory experiments in this work.The sensitivity analysis was provided to have an insight in the effect of the evaluated process parameters.Furthermore,in order to minimize the springback problem,an accurate springback simulation model of the part was established and validated.The effects of the element size and timesteps on springback model were further investigated.Results indicate that the custom mesh size is beneficial for the springback simulation,and the four timesteps are found suited for the springback analysis for the complex geometry part.Finally,a strategy for reducing the springback by changing the geometry of the blank is proposed.The optimal blank geometry is obtained and used for manufacturing the part.
基金Project(2006AA060201) supported by the National High Technology Research and Development Program of China
文摘A mathematical mechanism model was proposed for the description and analysis of the heat-stirring-acid leaching process.The model is proved to be effective by experiment.Afterwards,the leaching problem was formulated as a constrained multi-objective optimization problem based on the mechanism model.A two-stage guide multi-objective particle swarm optimization(TSG-MOPSO) algorithm was proposed to solve this optimization problem,which can accelerate the convergence and guarantee the diversity of pareto-optimal front set as well.Computational experiment was conducted to compare the solution by the proposed algorithm with SIGMA-MOPSO by solving the model and with the manual solution in practice.The results indicate that the proposed algorithm shows better performance than SIGMA-MOPSO,and can improve the current manual solutions significantly.The improvements of production time and economic benefit compared with manual solutions are 10.5% and 7.3%,respectively.
基金supported by the National Natural Science Foundation of China(6087602250677014)+2 种基金the High-Tech Research and Development Program of China(2006AA04A104)the Hunan Provincial Natural Science Foundation of China (06JJ202407JJ5076).
文摘To design approximately linear-phase complex coefficient finite impulse response (FIR) digital filters with arbitrary magnitude and group delay responses, a novel neural network approach is studied. The approach is based on a batch back-propagation neural network algorithm by directly minimizing the real magnitude error and phase error from the linear-phase to obtain the filter's coefficients. The approach can deal with both the real and complex coefficient FIR digital filters design problems. The main advantage of the proposed design method is the significant reduction in the group delay error. The effectiveness of the proposed method is illustrated with two optimal design examples.
基金Project(61025015) supported by the National Natural Science Funds for Distinguished Young Scholars of ChinaProject(21106036) supported by the National Natural Science Foundation of China+2 种基金Project(200805331103) supported by Research Fund for the Doctoral Program of Higher Education of ChinaProject(NCET-08-0576) supported by Program for New Century Excellent Talents in Universities of ChinaProject(11B038) supported by Scientific Research Fund for the Excellent Youth Scholars of Hunan Provincial Education Department,China
文摘In order to effectively analyse the multivariate time series data of complex process,a generic reconstruction technology based on reduction theory of rough sets was proposed,Firstly,the phase space of multivariate time series was originally reconstructed by a classical reconstruction technology.Then,the original decision-table of rough set theory was set up according to the embedding dimensions and time-delays of the original reconstruction phase space,and the rough set reduction was used to delete the redundant dimensions and irrelevant variables and to reconstruct the generic phase space,Finally,the input vectors for the prediction of multivariate time series were extracted according to generic reconstruction results to identify the parameters of prediction model.Verification results show that the developed reconstruction method leads to better generalization ability for the prediction model and it is feasible and worthwhile for application.
基金Supported by UK EPSRC (grants GR/N13319 and GR/R 10875)
文摘This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network, bootstrap aggregated neural networks are used to build reliable data based empirical models. Apart from improving the model generalisation capability, a bootstrap aggregated neural network can also provide model prediction confidence bounds. A reliable optimal control method by incorporating model prediction confidence bounds into the optimisation objective function is presented. A neural network based iterative learning control strategy is presented to overcome the problem due to unknown disturbances and model-plant mismatches. The proposed methods are demonstrated on a simulated batch polymerisation process.
文摘针对干旱区水资源分配不合理的问题,以新疆开都河流域水资源为研究对象,以流域水-能源-生态综合收益最高为目标,建立水资源多目标优化配置模型,采用基于参考点的非支配排序进化算法(reference-point based many-objective,NSGA-Ⅲ)对模型进行求解。针对优化方案选择问题,以经济效益、社会效益和生态效益为准则层构建流域水资源最适配置方案评价指标体系,采用层次分析法对优化结果进行评价分析。结果表明:最适配置方案相较于传统配置方案,水库发电量增加5.83%,农业经济效益减少2.34%,生态效益提高40.08%;当地种植结构需进行适当调整,应增加玉米和西红柿的种植面积,减少小麦、棉花和辣椒的种植面积;博斯腾湖大湖和小湖水位均达到最适生态水位。研究成果可为当地制定水资源配置方案提供决策参考,有重要的理论意义和应用价值。