Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ...Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals.展开更多
In order to eliminate noise interference of metal magnetic memory signal in early diagnosis of stress concentration zones and metal defects, the empirical mode decomposition method combined with the magnetic field gra...In order to eliminate noise interference of metal magnetic memory signal in early diagnosis of stress concentration zones and metal defects, the empirical mode decomposition method combined with the magnetic field gradient characteristic was proposed. A compressive force periodically acting upon a casing pipe led to appreciable deformation, and magnetic signals were measured by a magnetic indicator TSC-1M-4. The raw magnetic memory signal was first decomposed into different intrinsic mode functions and a residue, and the magnetic field gradient distribution of the subsequent reconstructed signal was obtained. The experimental results show that the gradient around 350 mm represents the maximum value ignoring the marginal effect, and there is a good correlation between the real maximum field gradient and the stress concentration zone. The wavelet transform associated with envelop analysis also exhibits this gradient characteristic, indicating that the proposed method is effective for early identifying critical zones.展开更多
This paper proposes a new signal noise level estimation approach by local regions. The estimated noise variance is applied as the threshold for an improved empirical mode decomposition(EMD) based signal denoising me...This paper proposes a new signal noise level estimation approach by local regions. The estimated noise variance is applied as the threshold for an improved empirical mode decomposition(EMD) based signal denoising method. The proposed estimation method can effectively extract the candidate regions for the noise level estimation by measuring the correlation coefficient between noisy signal and a Gaussian filtered signal. For the improved EMD based method, the situation of decomposed intrinsic mode function(IMFs) which contains noise and signal simultaneously are taken into account. Experimental results from two simulated signals and an X-ray pulsar signal demonstrate that the proposed method can achieve better performance than the conventional EMD and wavelet transform(WT) based denoising methods.展开更多
基金The authors gratefully acknowledge the support of the National Natural Science Foundation of China(No.11574250).
文摘Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals.
基金Project(10772061) supported by the National Natural Science Foundation of ChinaProject(A200907) supported by the Natural Science Foundation of Heilongjiang Province, China Project(20092322120001) supported by the PhD Programs Foundations of Ministry of Education of China
文摘In order to eliminate noise interference of metal magnetic memory signal in early diagnosis of stress concentration zones and metal defects, the empirical mode decomposition method combined with the magnetic field gradient characteristic was proposed. A compressive force periodically acting upon a casing pipe led to appreciable deformation, and magnetic signals were measured by a magnetic indicator TSC-1M-4. The raw magnetic memory signal was first decomposed into different intrinsic mode functions and a residue, and the magnetic field gradient distribution of the subsequent reconstructed signal was obtained. The experimental results show that the gradient around 350 mm represents the maximum value ignoring the marginal effect, and there is a good correlation between the real maximum field gradient and the stress concentration zone. The wavelet transform associated with envelop analysis also exhibits this gradient characteristic, indicating that the proposed method is effective for early identifying critical zones.
基金supported by the China Aerospace Science and Technology Corporation’s Aerospace Science and Technology Innovation Fund Project(casc2013086)CAST Innovation Fund Project(cast2012028)
文摘This paper proposes a new signal noise level estimation approach by local regions. The estimated noise variance is applied as the threshold for an improved empirical mode decomposition(EMD) based signal denoising method. The proposed estimation method can effectively extract the candidate regions for the noise level estimation by measuring the correlation coefficient between noisy signal and a Gaussian filtered signal. For the improved EMD based method, the situation of decomposed intrinsic mode function(IMFs) which contains noise and signal simultaneously are taken into account. Experimental results from two simulated signals and an X-ray pulsar signal demonstrate that the proposed method can achieve better performance than the conventional EMD and wavelet transform(WT) based denoising methods.