期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于CEEMD-RF模型的渣土边坡地下水埋深预测 被引量:5
1
作者 付智勇 陈文强 +2 位作者 唐伟雄 龙晶晶 曾江波 《人民长江》 北大核心 2020年第1期141-148,共8页
地下水是影响渣土边坡稳定性的关键因素之一,地下水埋深预测对分析渣土边坡稳定性具有重要意义。考虑渣土边坡地下水水位的高度非平稳和非线性特点,提出了一种基于相空间重构的互补集合经验模态分解-随机森林(CEEMD-RF)的地下水埋深预... 地下水是影响渣土边坡稳定性的关键因素之一,地下水埋深预测对分析渣土边坡稳定性具有重要意义。考虑渣土边坡地下水水位的高度非平稳和非线性特点,提出了一种基于相空间重构的互补集合经验模态分解-随机森林(CEEMD-RF)的地下水埋深预测模型。以广州市某渣土边坡SW2水文观测孔为例,将基于相空间重构的CEEMD-RF模型应用于该渣土边坡的地下水埋深预测,并与相空间重构的RF模型预测结果进行对比分析。结果表明:利用CEEMD-RF模型对地下水埋深预测的拟合优度为0.997,均方根误差为0.03 m,优于相空间重构的RF模型预测结果;基于相空间重构的CEEMD-RF模型预测的地下水埋深序列能很好地反映地下水埋深的尖变点。 展开更多
关键词 地下水埋深预测 渣土边坡 相空间重构 ceemd-rf
在线阅读 下载PDF
基于CEEMD-BiLSTM-RFR的短期光伏功率预测 被引量:7
2
作者 冯沛儒 江桂芬 +2 位作者 徐加银 叶剑桥 李生虎 《科学技术与工程》 北大核心 2024年第5期1955-1962,共8页
由于短期光伏预测中气象因素的时间尺度不同,直接分析其对光伏功率的相关性,易忽略时间尺度的影响,进而导致预测模型误差。为提高光伏功率预测精度,构建了预测模型。首先,利用互补集合经验模态分解(complementary empirical mode decomp... 由于短期光伏预测中气象因素的时间尺度不同,直接分析其对光伏功率的相关性,易忽略时间尺度的影响,进而导致预测模型误差。为提高光伏功率预测精度,构建了预测模型。首先,利用互补集合经验模态分解(complementary empirical mode decomposition,CEEMD)将光伏序列进行分解,得到在不同时间尺度上的光伏分量;然后,通过Pearson相关系数分析各光伏分量与空气温度、太阳辐射度、风速、风向和空气湿度的关系,对于强相关分量建立关于气象因素的随机森林回归(random forest regression,RFR)预测模型,弱相关分量直接通过双向长短期记忆网络(bidirectional long short-term memory neural network,BiLSTM)进行预测;并将预测求和输出。通过安徽省蚌埠市光伏电站7月实测数据进行验证,实验结果表明,所提预测模型CEEMD-BiLSTM-RFR相比传统预测模型有较好的预测精度。 展开更多
关键词 光伏功率预测 互补集合经验模态分解 相关性分析 BiLSTM 随机森林回归
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部