因大量采用分布式、综合化、模块化方案,复杂电子系统极易出现共因故障和故障并发等新问题,传统测试性参数确定方法难以解决。针对这一问题,提出一种基于着色广义随机Petri网(colored generalized stochastic Petri nets,CGSPN)的复杂...因大量采用分布式、综合化、模块化方案,复杂电子系统极易出现共因故障和故障并发等新问题,传统测试性参数确定方法难以解决。针对这一问题,提出一种基于着色广义随机Petri网(colored generalized stochastic Petri nets,CGSPN)的复杂电子系统测试性参数确定新方法。首先,综合需求信息、约束边界和维修保障等要求,建立电子系统两层级CGSPN模型,引入着色,实现不同模块各种状态的实时追踪和故障并发处理,通过广义随机处理共因故障的随机不确定性;然后,利用着色和可用度探索一种带有冗余设计的测试性参数处理手段,丰富测试性体系;最后,构建一种不同模块、各种状态融合的并行分析技术,统一系统层和模块层之间的状态转移关系,避免分阶段串行处理和等效替换。以通信导航识别系统为例进行实例分析,所提方法比传统方法具有更好的可用性和有效性。展开更多
针对传统Petri网(P/T系统)无法根据后继标识确定系统失效部位的问题,采用着色Petri网(Colored Petri Net,CPN)建立动车组列控车载子系统的故障传播模型。首先,通过CPN与传统Petri网理论的对比说明采用CPN建模的可行性。其次,根据车载子...针对传统Petri网(P/T系统)无法根据后继标识确定系统失效部位的问题,采用着色Petri网(Colored Petri Net,CPN)建立动车组列控车载子系统的故障传播模型。首先,通过CPN与传统Petri网理论的对比说明采用CPN建模的可行性。其次,根据车载子系统的结构组成及工作模式建立故障树模型,并通过Petri网描述故障树逻辑门事件之间的逻辑关系,给出故障树的Petri网表示方法,建立车载子系统的P/T系统模型;进一步根据CPN理论确定托肯染色方法、权函数等模型参数,将P/T系统转化为着色网系统,并举例说明后继标识的计算规则。最后,通过与传统Petri网推理及故障识别过程的对比,证明了采用CPN分析系统故障机理的正确性及在故障识别过程中的高效性。所提方法可为车载子系统的故障识别提供一定依据。展开更多
文摘因大量采用分布式、综合化、模块化方案,复杂电子系统极易出现共因故障和故障并发等新问题,传统测试性参数确定方法难以解决。针对这一问题,提出一种基于着色广义随机Petri网(colored generalized stochastic Petri nets,CGSPN)的复杂电子系统测试性参数确定新方法。首先,综合需求信息、约束边界和维修保障等要求,建立电子系统两层级CGSPN模型,引入着色,实现不同模块各种状态的实时追踪和故障并发处理,通过广义随机处理共因故障的随机不确定性;然后,利用着色和可用度探索一种带有冗余设计的测试性参数处理手段,丰富测试性体系;最后,构建一种不同模块、各种状态融合的并行分析技术,统一系统层和模块层之间的状态转移关系,避免分阶段串行处理和等效替换。以通信导航识别系统为例进行实例分析,所提方法比传统方法具有更好的可用性和有效性。
文摘针对传统Petri网(P/T系统)无法根据后继标识确定系统失效部位的问题,采用着色Petri网(Colored Petri Net,CPN)建立动车组列控车载子系统的故障传播模型。首先,通过CPN与传统Petri网理论的对比说明采用CPN建模的可行性。其次,根据车载子系统的结构组成及工作模式建立故障树模型,并通过Petri网描述故障树逻辑门事件之间的逻辑关系,给出故障树的Petri网表示方法,建立车载子系统的P/T系统模型;进一步根据CPN理论确定托肯染色方法、权函数等模型参数,将P/T系统转化为着色网系统,并举例说明后继标识的计算规则。最后,通过与传统Petri网推理及故障识别过程的对比,证明了采用CPN分析系统故障机理的正确性及在故障识别过程中的高效性。所提方法可为车载子系统的故障识别提供一定依据。