In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow e...In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow equation.The velocity and pressure are computed simultaneously.The accuracy of velocity is improved one order.The concentration equation is solved by using mixed finite element,multi-step difference and upwind approximation.A multi-step method is used to approximate time derivative for improving the accuracy.The upwind approximation and an expanded mixed finite element are adopted to solve the convection and diffusion,respectively.The composite method could compute the diffusion flux and its gradient.It possibly becomes an eficient tool for solving convection-dominated diffusion problems.Firstly,the conservation of mass holds.Secondly,the multi-step method has high accuracy.Thirdly,the upwind approximation could avoid numerical dispersion.Using numerical analysis of a priori estimates and special techniques of differential equations,we give an error estimates for a positive definite problem.Numerical experiments illustrate its computational efficiency and feasibility of application.展开更多
Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis r...Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis remain significant challenges.This research aims to develop an effective computational method for analyzing the free vibration of functionally graded(FG)microplates under high temperatures while resting on a Pasternak foundation(PF).This formulation leverages a new thirdorder shear deformation theory(new TSDT)for improved accuracy without requiring shear correction factors.Additionally,the modified couple stress theory(MCST)is incorporated to account for sizedependent effects in microplates.The PF is characterized by two parameters including spring stiffness(k_(w))and shear layer stiffness(k_(s)).To validate the proposed method,the results obtained are compared with those of the existing literature.Furthermore,numerical examples explore the influence of various factors on the high-temperature free vibration of FG microplates.These factors include the length scale parameter(l),geometric dimensions,material properties,and the presence of the elastic foundation.The findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the results of this research will have great potential in military and defense applications such as components of submarines,fighter aircraft,and missiles.展开更多
Controlled nuclear fusion represents a significant solution for future clean energy,with ion cyclotron range of frequency(ICRF)heating emerging as one of the most promising technologies for heating the fusion plasma.T...Controlled nuclear fusion represents a significant solution for future clean energy,with ion cyclotron range of frequency(ICRF)heating emerging as one of the most promising technologies for heating the fusion plasma.This study primarily presents a self-developed 2D ion cyclotron resonance antenna electromagnetic field solver(ICRAEMS)code implemented on the MATLAB platform,which solves the electric field wave equation by using the finite element method,establishing perfectly matched layer(PML)boundary conditions,and post-processing the electromagnetic field data.This code can be utilized to facilitate the design and optimization processes of antennas for ICRF heating technology.Furthermore,this study examines the electric field distribution and power spectrum associated with various antenna phases to investigate how different antenna configurations affect the electromagnetic field propagation and coupling characteristics.展开更多
A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underex...A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underexpanded axisymmetric jet. Several flow property distributions along the jet axis, including density, pres- sure and Mach number are obtained and the qualitative flowfield structures of interest are well captured using the proposed method, including shock waves, slipstreams, traveling vortex ring and multiple Mach disks. Two Mach disk locations agree well with computational and experimental measurement results. It indicates that the method is robust and efficient for solving the unsteady-state underexpanded axisymmetric jet.展开更多
A bicubic B-spline finite element method is proposed to solve optimal control problems governed by fourth-order semilinear parabolic partial differential equations.Its key feature is the selection of bicubic B-splines...A bicubic B-spline finite element method is proposed to solve optimal control problems governed by fourth-order semilinear parabolic partial differential equations.Its key feature is the selection of bicubic B-splines as trial functions to approximate the state and costate variables in two space dimensions.A Crank-Nicolson difference scheme is constructed for time discretization.The resulting numerical solutions belong to C2in space,and the order of the coefficient matrix is low.Moreover,the Bogner-Fox-Schmit element is considered for comparison.Two numerical experiments demonstrate the feasibility and effectiveness of the proposed method.展开更多
For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of ...For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of the mesh in the layer adjacent to the transition point,resulting in a suboptimal estimate for convergence.Existing analysis techniques cannot handle these difficulties well.To fill this gap,here a novel interpolation is designed delicately for the smooth part of the solution,bringing about the optimal supercloseness result of almost order 2 under an energy norm for the finite element method.Our theoretical result is uniform in the singular perturbation parameterεand is supported by the numerical experiments.展开更多
In polar regions, floating ice exhibits distinct characteristics across a range of spatial scales. It is well recognized that the irregular geometry of these ice formations markedly influences their dynamic behavior. ...In polar regions, floating ice exhibits distinct characteristics across a range of spatial scales. It is well recognized that the irregular geometry of these ice formations markedly influences their dynamic behavior. This study introduces a polyhedral Discrete Element Method (DEM) tailored for polar ice, incorporating the Gilbert-Johnson-Keerthi (GJK) and Expanding Polytope Algorithm (EPA) for contact detection. This approach facilitates the simulation of the drift and collision processes of floating ice, effectively capturing its freezing and fragmentation. Subsequently, the stability and reli ability of this model are validated by uniaxial compression on level ice fields, focusing specifically on the influence of compression strength on deformation resistance. Additionally, clusters of ice floes nav igating through narrow channels are simulated. These studies have qualitatively assessed the effects of Floe Size Distribution (FSD), initial concentration, and circularity on their flow dynamics. The higher power-law exponent values in the FSD, increased circularity, and decreased concentration are each as sociated with accelerated flow in ice floe fields. The simulation results distinctly demonstrate the con siderable impact of sea ice geometry on the movement of clusters, offering valuable insights into the complexities of polar ice dynamics.展开更多
Although conventional coal mine designs are conservative regarding pillar strength,local failures such as roof-falls and pillar bursts still affect mine safety and operations.Previous studies have identified that disc...Although conventional coal mine designs are conservative regarding pillar strength,local failures such as roof-falls and pillar bursts still affect mine safety and operations.Previous studies have identified that discontinuous,layered roof materials have some self-supporting capacity.This research is a preliminary step towards understanding these mechanics in coal-measure rocks.Although others have considered broad conceptual models and simplified analogs for mine roof behavior,this study presents a unique numerical model that more completely represents in-situ roof conditions.The discrete element method(DEM)is utilized to conduct a parametric analysis considering a range of in-situ stress ratios,material properties,and joint networks to determine the parameters controlling the stability of single-entries modeled in two-dimensions.Model results are compared to empirical observations of roof-support effectiveness(ARBS)in the context of the coal mine roof rating(CMRR)system.Results such as immediate roof displacement,overall stability,and statistical relationships between model parameters and outcomes are presented herein.Potential practical applications of this line of research include:(1)roof-support optimization for a range of coal-measure rocks,(2)establishment of a relationship between roof stability and pillar stress,and(3)determination of which parameters are most critical to roof stability and therefore require concentrated evaluation.展开更多
Applying the standard Galerkin finite element method for solving flow problems in porous media encounters some difficulties such as numerical oscillation at the shock front and discontinuity of the velocity field on e...Applying the standard Galerkin finite element method for solving flow problems in porous media encounters some difficulties such as numerical oscillation at the shock front and discontinuity of the velocity field on element faces.Discontinuity of velocity field leads this method not to conserve mass locally.Moreover,the accuracy and stability of a solution is highly affected by a non-conservative method.In this paper,a three dimensional control volume finite element method is developed for twophase fluid flow simulation which overcomes the deficiency of the standard finite element method,and attains high-orders of accuracy at a reasonable computational cost.Moreover,this method is capable of handling heterogeneity in a very rational way.A fully implicit scheme is applied to temporal discretization of the governing equations to achieve an unconditionally stable solution.The accuracy and efficiency of the method are verified by simulating some waterflooding experiments.Some representative examples are presented to illustrate the capability of the method to simulate two-phase fluid flow in heterogeneous porous media.展开更多
Propagation characteristics of surface acoustic waves(SAWs) in ZnO films/glass substrates are theoretically investigated by the three-dimensional(3D) finite element method. At first, for(11ˉ20) ZnO films/glass ...Propagation characteristics of surface acoustic waves(SAWs) in ZnO films/glass substrates are theoretically investigated by the three-dimensional(3D) finite element method. At first, for(11ˉ20) ZnO films/glass substrates, the simulation results confirm that the Rayleigh waves along the [0001] direction and Love waves along the [1ˉ100] direction are successfully excited in the multilayered structures. Next, the crystal orientations of the ZnO films are rotated, and the influences of ZnO films with different crystal orientations on SAW characterizations, including the phase velocity, electromechanical coupling coefficient, and temperature coefficient of frequency, are investigated. The results show that at appropriate h/λ, Rayleigh wave has a maximum k^2 of 2.4% in(90°, 56.5°, 0°) ZnO film/glass substrate structure; Love wave has a maximum k^2 of 3.81% in(56°, 90°, 0°) ZnO film/glass substrate structure. Meantime, for Rayleigh wave and Love wave devices, zero temperature coefficient of frequency(TCF) can be achieved at appropriate ratio of film thickness to SAW wavelength. These results show that SAW devices with higher k^2 or lower TCF can be fabricated by flexibly selecting the crystal orientations of ZnO films on glass substrates.展开更多
This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(...This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(XRD)-based DIP method effectively analyzed the mineral composition contents and spatial distributions of granite. During the particle flow code(PFC2D) model calibration phase, the numerical simulation exhibited that the uniaxial compressive strength(UCS) value, elastic modulus(E), and failure pattern of the granite specimen in the UCS test were comparable to the experiment. By establishing 351 sets of numerical models and exploring the impacts of mineral composition on the mechanical properties of granite, it indicated that there was no negative correlation between quartz and feldspar for UCS, tensile strength(σ_(t)), and E. In contrast, mica had a significant negative correlation for UCS, σ_(t), and E. The presence of quartz increased the brittleness of granite, whereas the presence of mica and feldspar increased its ductility in UCS and direct tensile strength(DTS) tests. Varying contents of major mineral compositions in granite showed minor influence on the number of cracks in both UCS and DTS tests.展开更多
In this paper, we consider the mixed Navier-Stokes/Darcy model with BeaversJoseph interface conditions. Based on two-grid discretizations, a local and parallel finite element algorithm for this mixed model is proposed...In this paper, we consider the mixed Navier-Stokes/Darcy model with BeaversJoseph interface conditions. Based on two-grid discretizations, a local and parallel finite element algorithm for this mixed model is proposed and analyzed. Optimal errors are obtained and numerical experiments are presented to show the efficiency and effectiveness of the local and parallel finite element algorithm.展开更多
In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE metho...In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, then the computational efficiency is higher. A hybrid approximation function is applied to combine the CVRKP method with the FE method, and the traditional difference method for two-point boundary value problems is selected as the time discretization scheme. The corresponding formulations of the CVRKP-FE method are presented in detail. Several selected numerical examples of the transient heat conduction problems are presented to illustrate the performance of the CVRKP-FE method.展开更多
The discrete ordinates(S N)method requires numerous angular unknowns to achieve the desired accu-racy for shielding calculations involving strong anisotropy.Our objective is to develop an angular adaptive algorithm in...The discrete ordinates(S N)method requires numerous angular unknowns to achieve the desired accu-racy for shielding calculations involving strong anisotropy.Our objective is to develop an angular adaptive algorithm in the S N method to automatically optimize the angular distribution and minimize angular discretization errors with lower expenses.The proposed method enables linear dis-continuous finite element quadrature sets over an icosahe-dron to vary their quadrature orders in a one-twentieth sphere so that fine resolutions can be applied to the angular domains that are important.An error estimation that operates in conjunction with the spherical harmonics method is developed to determine the locations where more refinement is required.The adaptive quadrature sets are applied to three duct problems,including the Kobayashi benchmarks and the IRI-TUB research reactor,which emphasize the ability of this method to resolve neutron streaming through ducts with voids.The results indicate that the performance of the adaptive method is more effi-cient than that of uniform quadrature sets for duct transport problems.Our adaptive method offers an appropriate placement of angular unknowns to accurately integrate angular fluxes while reducing the computational costs in terms of unknowns and run times.展开更多
Due to the low permeability of tight reservoirs,throats play a significant role in controlling fluid flow.Although many studies have been conducted to investigate fluid flow in throats in the microscale domain,compara...Due to the low permeability of tight reservoirs,throats play a significant role in controlling fluid flow.Although many studies have been conducted to investigate fluid flow in throats in the microscale domain,comparatively fewer works have been devoted to study the effect of adsorption boundary layer(ABL)in throats based on the digital rock method.By considering an ABL,we investigate its effects on fluid flow.We build digital rock model based on computed tomography technology.Then,microscopic pore structures are extracted with watershed segmentation and pore geometries are meshed through Delaunay triangulation approach.Finally,using the meshed digital simulation model and finite element method,we investigate the effects of viscosity and thickness of ABL on microscale flow.Our results demonstrate that viscosity and thickness of ABL are major factors that significantly hinder fluid flow in throats.展开更多
The main purpose of this paper is to present numerical results of static bending and free vibration of functionally graded porous(FGP) variable-thickness plates by using an edge-based smoothed finite element method(ES...The main purpose of this paper is to present numerical results of static bending and free vibration of functionally graded porous(FGP) variable-thickness plates by using an edge-based smoothed finite element method(ES-FEM) associate with the mixed interpolation of tensorial components technique for the three-node triangular element(MITC3), so-called ES-MITC3. This ES-MITC3 element is performed to eliminate the shear locking problem and to enhance the accuracy of the existing MITC3 element. In the ES-MITC3 element, the stiffness matrices are obtained by using the strain smoothing technique over the smoothing domains formed by two adjacent MITC3 triangular elements sharing an edge. Materials of the plate are FGP with a power-law index(k) and maximum porosity distributions(U) in the forms of cosine functions. The influences of some geometric parameters, material properties on static bending, and natural frequency of the FGP variable-thickness plates are examined in detail.展开更多
The author studies the infinite element method for the boundary value problems of second order elliptic equations on unbounded and multiply connected domains. The author makes a partition of the domain into infinite n...The author studies the infinite element method for the boundary value problems of second order elliptic equations on unbounded and multiply connected domains. The author makes a partition of the domain into infinite number of elements. Without dividing the domain, as usual, into a bounded one and an exterior one, he derives an initial value problem of an ordinary differential equation for the combined stiffness matrix, then obtains the approximate solution with a small amount of computer work. Numerical examples are given.展开更多
In this article,two kinds of expandable parallel finite element methods,based on two-grid discretizations,are given to solve the linear elliptic problems.Compared with the classical local and parallel finite element m...In this article,two kinds of expandable parallel finite element methods,based on two-grid discretizations,are given to solve the linear elliptic problems.Compared with the classical local and parallel finite element methods,there are two attractive features of the methods shown in this article:1)a partition of unity is used to generate a series of local and independent subproblems to guarantee the final approximation globally continuous;2)the computational domain of each local subproblem is contained in a ball with radius of O(H)(H is the coarse mesh parameter),which means methods in this article are more suitable for parallel computing in a large parallel computer system.Some a priori error estimation are obtained and optimal error bounds in both H^1-normal and L^2-normal are derived.Finally,numerical results are reported to test and verify the feasibility and validity of our methods.展开更多
In this paper, we represent a new numerical method for solving the nonstationary Stokes equations in an unbounded domain. The technique consists in coupling the boundary integral and finite element methods. The variat...In this paper, we represent a new numerical method for solving the nonstationary Stokes equations in an unbounded domain. The technique consists in coupling the boundary integral and finite element methods. The variational formulation and well posedness of the coupling method are obtained. The convergence and optimal estimates for the approximation solution are provided.展开更多
Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods(FEM) in this research field.The traditional armor design studi...Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods(FEM) in this research field.The traditional armor design studies performed with FEM requires sophisticated procedures and intensive computational effort,therefore simpler and accurate numerical approaches are always worthwhile to decrease armor development time.This study aims to apply a hybrid method using FEM simulation and artificial neural network(ANN) analysis to approximate ballistic limit thickness for armor steels.To achieve this objective,a predictive model based on the artificial neural networks is developed to determine ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition.In this methodology,the FEM simulations are used to create training cases for Multilayer Perceptron(MLP) three layer networks.In order to validate FE simulation methodology,ballistic shot tests on 20 mm thickness target were performed according to standard Stanag 4569.Afterwards,the successfully trained ANN(s) is used to predict the ballistic limit thickness of 500 HB high hardness steel armor.Results show that even with limited number of data,FEM-ANN approach can be used to predict ballistic penetration depth with adequate accuracy.展开更多
基金supported by the Natural Science Foundation of Shandong Province(ZR2021MA019)the National Natural Science Foundation of China(11871312)。
文摘In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow equation.The velocity and pressure are computed simultaneously.The accuracy of velocity is improved one order.The concentration equation is solved by using mixed finite element,multi-step difference and upwind approximation.A multi-step method is used to approximate time derivative for improving the accuracy.The upwind approximation and an expanded mixed finite element are adopted to solve the convection and diffusion,respectively.The composite method could compute the diffusion flux and its gradient.It possibly becomes an eficient tool for solving convection-dominated diffusion problems.Firstly,the conservation of mass holds.Secondly,the multi-step method has high accuracy.Thirdly,the upwind approximation could avoid numerical dispersion.Using numerical analysis of a priori estimates and special techniques of differential equations,we give an error estimates for a positive definite problem.Numerical experiments illustrate its computational efficiency and feasibility of application.
文摘Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis remain significant challenges.This research aims to develop an effective computational method for analyzing the free vibration of functionally graded(FG)microplates under high temperatures while resting on a Pasternak foundation(PF).This formulation leverages a new thirdorder shear deformation theory(new TSDT)for improved accuracy without requiring shear correction factors.Additionally,the modified couple stress theory(MCST)is incorporated to account for sizedependent effects in microplates.The PF is characterized by two parameters including spring stiffness(k_(w))and shear layer stiffness(k_(s)).To validate the proposed method,the results obtained are compared with those of the existing literature.Furthermore,numerical examples explore the influence of various factors on the high-temperature free vibration of FG microplates.These factors include the length scale parameter(l),geometric dimensions,material properties,and the presence of the elastic foundation.The findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the results of this research will have great potential in military and defense applications such as components of submarines,fighter aircraft,and missiles.
基金Project supported by the National MCF Energy R&D Program(Grant No.2022YFE03190100)the National Natural Science Foundation of China(Grant Nos.12422513,12105035,and U21A20438)the Xiaomi Young Talents Program.
文摘Controlled nuclear fusion represents a significant solution for future clean energy,with ion cyclotron range of frequency(ICRF)heating emerging as one of the most promising technologies for heating the fusion plasma.This study primarily presents a self-developed 2D ion cyclotron resonance antenna electromagnetic field solver(ICRAEMS)code implemented on the MATLAB platform,which solves the electric field wave equation by using the finite element method,establishing perfectly matched layer(PML)boundary conditions,and post-processing the electromagnetic field data.This code can be utilized to facilitate the design and optimization processes of antennas for ICRF heating technology.Furthermore,this study examines the electric field distribution and power spectrum associated with various antenna phases to investigate how different antenna configurations affect the electromagnetic field propagation and coupling characteristics.
文摘A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underexpanded axisymmetric jet. Several flow property distributions along the jet axis, including density, pres- sure and Mach number are obtained and the qualitative flowfield structures of interest are well captured using the proposed method, including shock waves, slipstreams, traveling vortex ring and multiple Mach disks. Two Mach disk locations agree well with computational and experimental measurement results. It indicates that the method is robust and efficient for solving the unsteady-state underexpanded axisymmetric jet.
基金supported by the National Natural Science Foundation of China(11871312,12131014)the Natural Science Foundation of Shandong Province,China(ZR2023MA086)。
文摘A bicubic B-spline finite element method is proposed to solve optimal control problems governed by fourth-order semilinear parabolic partial differential equations.Its key feature is the selection of bicubic B-splines as trial functions to approximate the state and costate variables in two space dimensions.A Crank-Nicolson difference scheme is constructed for time discretization.The resulting numerical solutions belong to C2in space,and the order of the coefficient matrix is low.Moreover,the Bogner-Fox-Schmit element is considered for comparison.Two numerical experiments demonstrate the feasibility and effectiveness of the proposed method.
基金supported by National Natural Science Foundation of China(11771257)the Shandong Provincial Natural Science Foundation of China(ZR2023YQ002,ZR2023MA007,ZR2021MA004)。
文摘For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of the mesh in the layer adjacent to the transition point,resulting in a suboptimal estimate for convergence.Existing analysis techniques cannot handle these difficulties well.To fill this gap,here a novel interpolation is designed delicately for the smooth part of the solution,bringing about the optimal supercloseness result of almost order 2 under an energy norm for the finite element method.Our theoretical result is uniform in the singular perturbation parameterεand is supported by the numerical experiments.
文摘In polar regions, floating ice exhibits distinct characteristics across a range of spatial scales. It is well recognized that the irregular geometry of these ice formations markedly influences their dynamic behavior. This study introduces a polyhedral Discrete Element Method (DEM) tailored for polar ice, incorporating the Gilbert-Johnson-Keerthi (GJK) and Expanding Polytope Algorithm (EPA) for contact detection. This approach facilitates the simulation of the drift and collision processes of floating ice, effectively capturing its freezing and fragmentation. Subsequently, the stability and reli ability of this model are validated by uniaxial compression on level ice fields, focusing specifically on the influence of compression strength on deformation resistance. Additionally, clusters of ice floes nav igating through narrow channels are simulated. These studies have qualitatively assessed the effects of Floe Size Distribution (FSD), initial concentration, and circularity on their flow dynamics. The higher power-law exponent values in the FSD, increased circularity, and decreased concentration are each as sociated with accelerated flow in ice floe fields. The simulation results distinctly demonstrate the con siderable impact of sea ice geometry on the movement of clusters, offering valuable insights into the complexities of polar ice dynamics.
基金sponsored by the Alpha Foundation for the Improvement of Mine Safety and Health, Inc. (Alpha Foundation)the funding provided for this project by the Alpha Foundationpartially funded by the National Institute of Occupational Health and Science (NIOSH) under Grant Number 200-2016-90154.
文摘Although conventional coal mine designs are conservative regarding pillar strength,local failures such as roof-falls and pillar bursts still affect mine safety and operations.Previous studies have identified that discontinuous,layered roof materials have some self-supporting capacity.This research is a preliminary step towards understanding these mechanics in coal-measure rocks.Although others have considered broad conceptual models and simplified analogs for mine roof behavior,this study presents a unique numerical model that more completely represents in-situ roof conditions.The discrete element method(DEM)is utilized to conduct a parametric analysis considering a range of in-situ stress ratios,material properties,and joint networks to determine the parameters controlling the stability of single-entries modeled in two-dimensions.Model results are compared to empirical observations of roof-support effectiveness(ARBS)in the context of the coal mine roof rating(CMRR)system.Results such as immediate roof displacement,overall stability,and statistical relationships between model parameters and outcomes are presented herein.Potential practical applications of this line of research include:(1)roof-support optimization for a range of coal-measure rocks,(2)establishment of a relationship between roof stability and pillar stress,and(3)determination of which parameters are most critical to roof stability and therefore require concentrated evaluation.
基金Iranian Offshore Oil Company (IOOC) for financial support of this work
文摘Applying the standard Galerkin finite element method for solving flow problems in porous media encounters some difficulties such as numerical oscillation at the shock front and discontinuity of the velocity field on element faces.Discontinuity of velocity field leads this method not to conserve mass locally.Moreover,the accuracy and stability of a solution is highly affected by a non-conservative method.In this paper,a three dimensional control volume finite element method is developed for twophase fluid flow simulation which overcomes the deficiency of the standard finite element method,and attains high-orders of accuracy at a reasonable computational cost.Moreover,this method is capable of handling heterogeneity in a very rational way.A fully implicit scheme is applied to temporal discretization of the governing equations to achieve an unconditionally stable solution.The accuracy and efficiency of the method are verified by simulating some waterflooding experiments.Some representative examples are presented to illustrate the capability of the method to simulate two-phase fluid flow in heterogeneous porous media.
基金supported by the National Natural Science Foundation of China(Grant No.11304160)the Natural Science Foundation of Jiangsu Provincial Higher Education Institutions,China(Grant No.13KJB140008)the Foundation of Nanjing University of Posts and Telecommunications,China(Grant No.NY213018)
文摘Propagation characteristics of surface acoustic waves(SAWs) in ZnO films/glass substrates are theoretically investigated by the three-dimensional(3D) finite element method. At first, for(11ˉ20) ZnO films/glass substrates, the simulation results confirm that the Rayleigh waves along the [0001] direction and Love waves along the [1ˉ100] direction are successfully excited in the multilayered structures. Next, the crystal orientations of the ZnO films are rotated, and the influences of ZnO films with different crystal orientations on SAW characterizations, including the phase velocity, electromechanical coupling coefficient, and temperature coefficient of frequency, are investigated. The results show that at appropriate h/λ, Rayleigh wave has a maximum k^2 of 2.4% in(90°, 56.5°, 0°) ZnO film/glass substrate structure; Love wave has a maximum k^2 of 3.81% in(56°, 90°, 0°) ZnO film/glass substrate structure. Meantime, for Rayleigh wave and Love wave devices, zero temperature coefficient of frequency(TCF) can be achieved at appropriate ratio of film thickness to SAW wavelength. These results show that SAW devices with higher k^2 or lower TCF can be fabricated by flexibly selecting the crystal orientations of ZnO films on glass substrates.
基金This research was supported by the Department of Mining Engineering at the University of Utah.In addition,the lead author wishes to acknowledge the financial support received from the Talent Introduction Project,part of the Elite Program of Shandong University of Science and Technology(No.0104060540171).
文摘This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(XRD)-based DIP method effectively analyzed the mineral composition contents and spatial distributions of granite. During the particle flow code(PFC2D) model calibration phase, the numerical simulation exhibited that the uniaxial compressive strength(UCS) value, elastic modulus(E), and failure pattern of the granite specimen in the UCS test were comparable to the experiment. By establishing 351 sets of numerical models and exploring the impacts of mineral composition on the mechanical properties of granite, it indicated that there was no negative correlation between quartz and feldspar for UCS, tensile strength(σ_(t)), and E. In contrast, mica had a significant negative correlation for UCS, σ_(t), and E. The presence of quartz increased the brittleness of granite, whereas the presence of mica and feldspar increased its ductility in UCS and direct tensile strength(DTS) tests. Varying contents of major mineral compositions in granite showed minor influence on the number of cracks in both UCS and DTS tests.
文摘In this paper, we consider the mixed Navier-Stokes/Darcy model with BeaversJoseph interface conditions. Based on two-grid discretizations, a local and parallel finite element algorithm for this mixed model is proposed and analyzed. Optimal errors are obtained and numerical experiments are presented to show the efficiency and effectiveness of the local and parallel finite element algorithm.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Special Fund for Basic Scientific Research of Central Colleges of Chang’an University, China (Grant No. CHD2011JC080)
文摘In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, then the computational efficiency is higher. A hybrid approximation function is applied to combine the CVRKP method with the FE method, and the traditional difference method for two-point boundary value problems is selected as the time discretization scheme. The corresponding formulations of the CVRKP-FE method are presented in detail. Several selected numerical examples of the transient heat conduction problems are presented to illustrate the performance of the CVRKP-FE method.
基金supported by the National Natural Science Foundation of China(No.11975097)the Fundamental Research Funds for the Central Universities(No.2019MS038).
文摘The discrete ordinates(S N)method requires numerous angular unknowns to achieve the desired accu-racy for shielding calculations involving strong anisotropy.Our objective is to develop an angular adaptive algorithm in the S N method to automatically optimize the angular distribution and minimize angular discretization errors with lower expenses.The proposed method enables linear dis-continuous finite element quadrature sets over an icosahe-dron to vary their quadrature orders in a one-twentieth sphere so that fine resolutions can be applied to the angular domains that are important.An error estimation that operates in conjunction with the spherical harmonics method is developed to determine the locations where more refinement is required.The adaptive quadrature sets are applied to three duct problems,including the Kobayashi benchmarks and the IRI-TUB research reactor,which emphasize the ability of this method to resolve neutron streaming through ducts with voids.The results indicate that the performance of the adaptive method is more effi-cient than that of uniform quadrature sets for duct transport problems.Our adaptive method offers an appropriate placement of angular unknowns to accurately integrate angular fluxes while reducing the computational costs in terms of unknowns and run times.
基金National Natural Science Foundation of China(No.51674280,51774308,51704033,51722406,51950410591)Shandong Provincial Natural Science Foundation(ZR2019JQ21,JQ201808)+3 种基金the Fundamental Research Funds for the Central Universities(No.20CX02113A)National Science and Technology Major Project(2016ZX05014-000407)Program for Changjiang Scholars and Innovative Research Team in University(IRT_16R69)PetroChina Innovation Foundation(No.2018D-5007-0210)。
文摘Due to the low permeability of tight reservoirs,throats play a significant role in controlling fluid flow.Although many studies have been conducted to investigate fluid flow in throats in the microscale domain,comparatively fewer works have been devoted to study the effect of adsorption boundary layer(ABL)in throats based on the digital rock method.By considering an ABL,we investigate its effects on fluid flow.We build digital rock model based on computed tomography technology.Then,microscopic pore structures are extracted with watershed segmentation and pore geometries are meshed through Delaunay triangulation approach.Finally,using the meshed digital simulation model and finite element method,we investigate the effects of viscosity and thickness of ABL on microscale flow.Our results demonstrate that viscosity and thickness of ABL are major factors that significantly hinder fluid flow in throats.
基金funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant number 107.02-2019.330。
文摘The main purpose of this paper is to present numerical results of static bending and free vibration of functionally graded porous(FGP) variable-thickness plates by using an edge-based smoothed finite element method(ES-FEM) associate with the mixed interpolation of tensorial components technique for the three-node triangular element(MITC3), so-called ES-MITC3. This ES-MITC3 element is performed to eliminate the shear locking problem and to enhance the accuracy of the existing MITC3 element. In the ES-MITC3 element, the stiffness matrices are obtained by using the strain smoothing technique over the smoothing domains formed by two adjacent MITC3 triangular elements sharing an edge. Materials of the plate are FGP with a power-law index(k) and maximum porosity distributions(U) in the forms of cosine functions. The influences of some geometric parameters, material properties on static bending, and natural frequency of the FGP variable-thickness plates are examined in detail.
基金This work was supported by the China State Major Key Project for Basic Researches Science Fund of the Ministry of Education
文摘The author studies the infinite element method for the boundary value problems of second order elliptic equations on unbounded and multiply connected domains. The author makes a partition of the domain into infinite number of elements. Without dividing the domain, as usual, into a bounded one and an exterior one, he derives an initial value problem of an ordinary differential equation for the combined stiffness matrix, then obtains the approximate solution with a small amount of computer work. Numerical examples are given.
基金Subsidized by NSFC (11701343)partially supported by NSFC (11571274,11401466)
文摘In this article,two kinds of expandable parallel finite element methods,based on two-grid discretizations,are given to solve the linear elliptic problems.Compared with the classical local and parallel finite element methods,there are two attractive features of the methods shown in this article:1)a partition of unity is used to generate a series of local and independent subproblems to guarantee the final approximation globally continuous;2)the computational domain of each local subproblem is contained in a ball with radius of O(H)(H is the coarse mesh parameter),which means methods in this article are more suitable for parallel computing in a large parallel computer system.Some a priori error estimation are obtained and optimal error bounds in both H^1-normal and L^2-normal are derived.Finally,numerical results are reported to test and verify the feasibility and validity of our methods.
文摘In this paper, we represent a new numerical method for solving the nonstationary Stokes equations in an unbounded domain. The technique consists in coupling the boundary integral and finite element methods. The variational formulation and well posedness of the coupling method are obtained. The convergence and optimal estimates for the approximation solution are provided.
基金Otokar Otomotiv ve Savunma Sanayi A.S. for the financial support
文摘Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods(FEM) in this research field.The traditional armor design studies performed with FEM requires sophisticated procedures and intensive computational effort,therefore simpler and accurate numerical approaches are always worthwhile to decrease armor development time.This study aims to apply a hybrid method using FEM simulation and artificial neural network(ANN) analysis to approximate ballistic limit thickness for armor steels.To achieve this objective,a predictive model based on the artificial neural networks is developed to determine ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition.In this methodology,the FEM simulations are used to create training cases for Multilayer Perceptron(MLP) three layer networks.In order to validate FE simulation methodology,ballistic shot tests on 20 mm thickness target were performed according to standard Stanag 4569.Afterwards,the successfully trained ANN(s) is used to predict the ballistic limit thickness of 500 HB high hardness steel armor.Results show that even with limited number of data,FEM-ANN approach can be used to predict ballistic penetration depth with adequate accuracy.