An antenna adjustment strategy is developed for the target tracking problem in the collocated multiple-input multipleoutput(MIMO)radar.The basic technique of this strategy is to optimally allocate antennas by the prio...An antenna adjustment strategy is developed for the target tracking problem in the collocated multiple-input multipleoutput(MIMO)radar.The basic technique of this strategy is to optimally allocate antennas by the prior information in the tracking recursive period,with the objective of enhancing the worst-case estimate precision of multiple targets.On account of the posterior Cramer-Rao lower bound(PCRLB)offering a quantitative measure for target tracking accuracy,the PCRLB of joint direction-of-arrival(DOA)and Doppler is derived and utilized as the optimization criterion.It is shown that the dynamic antenna selection problem is NP-hard,and an efficient technique which combines convex relaxation with local search is put forward as the solution.Simulation results demonstrate the outperformance of the proposed strategy to the fixed antenna configuration and heuristic search algorithm.Moreover,it is able to offer close-to performance of the exhaustive search method.展开更多
Collocated multiple input multiple output(MIMO)radar,which has agile multi-beam working mode,can offer enhanced multiple targets tracking(MTT)ability.In detail,it can illuminate different targets simultaneously with m...Collocated multiple input multiple output(MIMO)radar,which has agile multi-beam working mode,can offer enhanced multiple targets tracking(MTT)ability.In detail,it can illuminate different targets simultaneously with multi-beam or one wide beam among multi-beam,providing greater degree of freedom in system resource control.An adaptive time-space resource and waveform control optimization model for the collocated MIMO radar with simultaneous multi-beam is proposed in this paper.The aim of the proposed scheme is to improve the overall tracking accuracy and meanwhile minimize the resource consumption under the guarantee of effective targets detection.A resource and waveform control algorithm which integrates the genetic algorithm(GA)is proposed to solve the optimization problem.The optimal transmitting waveform parameters,system sampling period,sub-array number,binary radar tracking parameterχ_i(t_k),transmitting energy and multi-beam direction vector combination are chosen adaptively,where the first one realizes the waveform control and the latter five realize the timespace resource allocation.Simulation results demonstrate the effectiveness of the proposed control method.展开更多
This paper was based on the corpus built by the writers on agricultural science and technology English. Through corpusbased research and statistical tools Ant Conc 3.2.1 and BFSU Collocator 1.0(Beijing Foreign Studie...This paper was based on the corpus built by the writers on agricultural science and technology English. Through corpusbased research and statistical tools Ant Conc 3.2.1 and BFSU Collocator 1.0(Beijing Foreign Studies University Collocator 1.0), this paper tried to make an analysis of the collocation and colligation of the word "soil". The result revealed the colligation between "soil" and its collocates in agricultural academic papers, which was instructive to academic writing and the research method was a practical reference of building a corpus on agricultural science and technology English.展开更多
In the constrained reentry trajectory design of hypersonic vehicles, multiple objectives with priorities bring about more difficulties to find the optimal solution. Therefore, a multi-objective reentry trajectory opti...In the constrained reentry trajectory design of hypersonic vehicles, multiple objectives with priorities bring about more difficulties to find the optimal solution. Therefore, a multi-objective reentry trajectory optimization (MORTO) approach via generalized varying domain (GVD) is proposed. Using the direct collocation approach, the trajectory optimization problem involving multiple objectives is discretized into a nonlinear multi-objective programming with priorities. In terms of fuzzy sets, the objectives are fuzzified into three types of fuzzy goals, and their constant tolerances are substituted by the varying domains. According to the principle that the objective with higher priority has higher satisfactory degree, the priority requirement is modeled as the order constraints of the varying domains. The corresponding two-side, single-side, and hybrid-side varying domain models are formulated for three fuzzy relations respectively. By regulating the parameter, the optimal reentry trajectory satisfying priorities can be achieved. Moreover, the performance about the parameter is analyzed, and the algorithm to find its specific value for maximum priority difference is proposed. The simulations demonstrate the effectiveness of the proposed method for hypersonic vehicles, and the comparisons with the traditional methods and sensitivity analysis are presented.展开更多
The problem involving an edge-crack in a rectangular material under the anti-plane mechanical loading and in-plane electric loading is analyzed under the impermeable conditions. By using the series expansion, the gene...The problem involving an edge-crack in a rectangular material under the anti-plane mechanical loading and in-plane electric loading is analyzed under the impermeable conditions. By using the series expansion, the general solutions of electromechanical fields are obtained, which satisfied both governing equations and crack sufrace boundary conditions, and the unknown constants in which can be obtained by the boundary collocation method. Numerical results are given to show the effect of electromechanical interaction on energy release rate.展开更多
To evaluate the performance of real time kinematic (RTK) network algorithms without applying actual measurements, a new method called geometric precision evaluation methodology (GPEM) based on covariance analysis was ...To evaluate the performance of real time kinematic (RTK) network algorithms without applying actual measurements, a new method called geometric precision evaluation methodology (GPEM) based on covariance analysis was presented. Three types of multiple reference station interpolation algorithms, including partial derivation algorithm (PDA), linear interpolation algorithms (LIA) and least squares condition (LSC) were discussed and analyzed. The geometric dilution of precision (GDOP) was defined to describe the influence of the network geometry on the interpolation precision, and the different GDOP expressions of above-mentioned algorithms were deduced. In order to compare geometric precision characteristics among different multiple reference station network algorithms, a simulation was conducted, and the GDOP contours of these algorithms were enumerated. Finally, to confirm the validation of GPEM, an experiment was conducted using data from Unite State Continuously Operating Reference Stations (US-CORS), and the precision performances were calculated according to the real test data and GPEM, respectively. The results show that GPEM generates very accurate estimation of the performance compared to the real data test.展开更多
基金supported by the National Natural Science Foundation of China(61601504)
文摘An antenna adjustment strategy is developed for the target tracking problem in the collocated multiple-input multipleoutput(MIMO)radar.The basic technique of this strategy is to optimally allocate antennas by the prior information in the tracking recursive period,with the objective of enhancing the worst-case estimate precision of multiple targets.On account of the posterior Cramer-Rao lower bound(PCRLB)offering a quantitative measure for target tracking accuracy,the PCRLB of joint direction-of-arrival(DOA)and Doppler is derived and utilized as the optimization criterion.It is shown that the dynamic antenna selection problem is NP-hard,and an efficient technique which combines convex relaxation with local search is put forward as the solution.Simulation results demonstrate the outperformance of the proposed strategy to the fixed antenna configuration and heuristic search algorithm.Moreover,it is able to offer close-to performance of the exhaustive search method.
基金supported by the National Natural Science Foundation of China(61671137)。
文摘Collocated multiple input multiple output(MIMO)radar,which has agile multi-beam working mode,can offer enhanced multiple targets tracking(MTT)ability.In detail,it can illuminate different targets simultaneously with multi-beam or one wide beam among multi-beam,providing greater degree of freedom in system resource control.An adaptive time-space resource and waveform control optimization model for the collocated MIMO radar with simultaneous multi-beam is proposed in this paper.The aim of the proposed scheme is to improve the overall tracking accuracy and meanwhile minimize the resource consumption under the guarantee of effective targets detection.A resource and waveform control algorithm which integrates the genetic algorithm(GA)is proposed to solve the optimization problem.The optimal transmitting waveform parameters,system sampling period,sub-array number,binary radar tracking parameterχ_i(t_k),transmitting energy and multi-beam direction vector combination are chosen adaptively,where the first one realizes the waveform control and the latter five realize the timespace resource allocation.Simulation results demonstrate the effectiveness of the proposed control method.
文摘This paper was based on the corpus built by the writers on agricultural science and technology English. Through corpusbased research and statistical tools Ant Conc 3.2.1 and BFSU Collocator 1.0(Beijing Foreign Studies University Collocator 1.0), this paper tried to make an analysis of the collocation and colligation of the word "soil". The result revealed the colligation between "soil" and its collocates in agricultural academic papers, which was instructive to academic writing and the research method was a practical reference of building a corpus on agricultural science and technology English.
基金supported by the Natural Science Foundation of Tianjin(12JCZDJC30300)the Research Foundation of Tianjin Key Laboratory of Process Measurement and Control(TKLPMC-201613)the State Scholarship Fund of China
文摘In the constrained reentry trajectory design of hypersonic vehicles, multiple objectives with priorities bring about more difficulties to find the optimal solution. Therefore, a multi-objective reentry trajectory optimization (MORTO) approach via generalized varying domain (GVD) is proposed. Using the direct collocation approach, the trajectory optimization problem involving multiple objectives is discretized into a nonlinear multi-objective programming with priorities. In terms of fuzzy sets, the objectives are fuzzified into three types of fuzzy goals, and their constant tolerances are substituted by the varying domains. According to the principle that the objective with higher priority has higher satisfactory degree, the priority requirement is modeled as the order constraints of the varying domains. The corresponding two-side, single-side, and hybrid-side varying domain models are formulated for three fuzzy relations respectively. By regulating the parameter, the optimal reentry trajectory satisfying priorities can be achieved. Moreover, the performance about the parameter is analyzed, and the algorithm to find its specific value for maximum priority difference is proposed. The simulations demonstrate the effectiveness of the proposed method for hypersonic vehicles, and the comparisons with the traditional methods and sensitivity analysis are presented.
文摘The problem involving an edge-crack in a rectangular material under the anti-plane mechanical loading and in-plane electric loading is analyzed under the impermeable conditions. By using the series expansion, the general solutions of electromechanical fields are obtained, which satisfied both governing equations and crack sufrace boundary conditions, and the unknown constants in which can be obtained by the boundary collocation method. Numerical results are given to show the effect of electromechanical interaction on energy release rate.
基金Project(61273055) supported by the National Natural Science Foundation of ChinaProject(CX2010B012) supported by Hunan Provincial Innovation Foundation for Postgraduate Students, ChinaProject(B100302) supported by Innovation Foundation for Postgraduate Students of National University of Defense Technology, China
文摘To evaluate the performance of real time kinematic (RTK) network algorithms without applying actual measurements, a new method called geometric precision evaluation methodology (GPEM) based on covariance analysis was presented. Three types of multiple reference station interpolation algorithms, including partial derivation algorithm (PDA), linear interpolation algorithms (LIA) and least squares condition (LSC) were discussed and analyzed. The geometric dilution of precision (GDOP) was defined to describe the influence of the network geometry on the interpolation precision, and the different GDOP expressions of above-mentioned algorithms were deduced. In order to compare geometric precision characteristics among different multiple reference station network algorithms, a simulation was conducted, and the GDOP contours of these algorithms were enumerated. Finally, to confirm the validation of GPEM, an experiment was conducted using data from Unite State Continuously Operating Reference Stations (US-CORS), and the precision performances were calculated according to the real test data and GPEM, respectively. The results show that GPEM generates very accurate estimation of the performance compared to the real data test.