Cold-rolling was conducted on AZ31 magnesium alloy with fine and coarse grains to produce plates with high density of shear bands and{101^(-)1}twins,respectively.Then,these two kinds of plates are subjected to isother...Cold-rolling was conducted on AZ31 magnesium alloy with fine and coarse grains to produce plates with high density of shear bands and{101^(-)1}twins,respectively.Then,these two kinds of plates are subjected to isothermal annealing to reveal the effect of shear bands and{101^(-)1}twins on recrystallization behavior.During annealing,static recrystallization occurs firstly in shear band zones and{101^(-)1}twin zones,which has different effect on texture and mechanical properties.With the increase of annealing temperature,strong basal texture remains in annealed SG-17%while the basal texture is weakened gradually in annealed LG-15%.Recrystallized grains from twin zones have a random orientation which is responsible for the weakened basal texture in annealed LG-15%.In addition,microhardness decreases gradually with the prolonged annealing time due to static recrystallization.LG-15%has a lower recrystallization activation energy because{101^(-)1}twins are in favor of the nucleation and growth of recrystallized grains.After 500℃annealing,the yield strength decreases significantly with a significant improvement in failure strain.The annealed LG-15%has a much higher compressive strain than the annealed SG-17%due to texture weakening effect.展开更多
The recrystallization and texture evolution of cold-rolled FeCrAl-0.65 Nb and FeCrAl-1.2 Nb alloys thin-wall tubes annealed at 600−900℃ for 1−600 min were investigated.The microstructures were characterized by electr...The recrystallization and texture evolution of cold-rolled FeCrAl-0.65 Nb and FeCrAl-1.2 Nb alloys thin-wall tubes annealed at 600−900℃ for 1−600 min were investigated.The microstructures were characterized by electron back scattering diffraction,electron probe micro-analyzer and transmission electron microscopy.The Vickers hardness and room temperature tensile properties were tested.The results showed that the hardness of fully recrystallized FeCrAl-1.2 Nb alloy was higher and more likely to recrystallize than FeCrAl-0.65 Nb alloy.The weak texture strength of annealing sample was obtained and the proportion of<111>//ND texture increased.The fine Laves phase distributed uniformly in FeCrAl-0.65 Nb alloy had good pinning effect and inhibited recrystallization.Higher Nb content had little effects on tensile properties of thin-wall tube,and induced the formation of larger Laves phase.There was less fine Laves phase pinning in the large area adjacent to the blocky Laves phase,which resulted in easy recrystallization in FeCrAl-1.2 Nb alloy.展开更多
基金Project(52405369) supported by National Natural Science Foundation of ChinaProject(BK20210891) supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(BX2022030) supported by the Special Project of Introducing Foreign Talents of Jiangsu Province,China。
文摘Cold-rolling was conducted on AZ31 magnesium alloy with fine and coarse grains to produce plates with high density of shear bands and{101^(-)1}twins,respectively.Then,these two kinds of plates are subjected to isothermal annealing to reveal the effect of shear bands and{101^(-)1}twins on recrystallization behavior.During annealing,static recrystallization occurs firstly in shear band zones and{101^(-)1}twin zones,which has different effect on texture and mechanical properties.With the increase of annealing temperature,strong basal texture remains in annealed SG-17%while the basal texture is weakened gradually in annealed LG-15%.Recrystallized grains from twin zones have a random orientation which is responsible for the weakened basal texture in annealed LG-15%.In addition,microhardness decreases gradually with the prolonged annealing time due to static recrystallization.LG-15%has a lower recrystallization activation energy because{101^(-)1}twins are in favor of the nucleation and growth of recrystallized grains.After 500℃annealing,the yield strength decreases significantly with a significant improvement in failure strain.The annealed LG-15%has a much higher compressive strain than the annealed SG-17%due to texture weakening effect.
基金Project(2019YFB1901002)supported by the Key Project of Nuclear Safety and Advanced Nuclear Technology,ChinaProject supported by State Key Laboratory of Powder Metallurgy,China。
文摘The recrystallization and texture evolution of cold-rolled FeCrAl-0.65 Nb and FeCrAl-1.2 Nb alloys thin-wall tubes annealed at 600−900℃ for 1−600 min were investigated.The microstructures were characterized by electron back scattering diffraction,electron probe micro-analyzer and transmission electron microscopy.The Vickers hardness and room temperature tensile properties were tested.The results showed that the hardness of fully recrystallized FeCrAl-1.2 Nb alloy was higher and more likely to recrystallize than FeCrAl-0.65 Nb alloy.The weak texture strength of annealing sample was obtained and the proportion of<111>//ND texture increased.The fine Laves phase distributed uniformly in FeCrAl-0.65 Nb alloy had good pinning effect and inhibited recrystallization.Higher Nb content had little effects on tensile properties of thin-wall tube,and induced the formation of larger Laves phase.There was less fine Laves phase pinning in the large area adjacent to the blocky Laves phase,which resulted in easy recrystallization in FeCrAl-1.2 Nb alloy.