The optimal estimation performance of target parameters is studied. First, the general form of Cramer-Rao bound (CRB) for joint estimation of target location and velocity is derived for coherent multiple input multi...The optimal estimation performance of target parameters is studied. First, the general form of Cramer-Rao bound (CRB) for joint estimation of target location and velocity is derived for coherent multiple input multiple output (MIMO) radars. To gain some insight into the behavior of the CRB, the CRB with a set of given orthogonal waveforms is studied as a specific case. Second, a maximum likelihood (ML) estimation algorithm is proposed. The mean square error (MSE) of the ML estimation of target location and velocity is obtained by Monte Carlo simulation and it approaches CRB in the high signal-to-noise ratio (SNR) region.展开更多
基金supported by the National Natural Science Foundation of China(61171120)the Key National Ministry Foundation of China(9140A07020212JW0101)the Foundation of Tsinghua University(20101081772)
文摘The optimal estimation performance of target parameters is studied. First, the general form of Cramer-Rao bound (CRB) for joint estimation of target location and velocity is derived for coherent multiple input multiple output (MIMO) radars. To gain some insight into the behavior of the CRB, the CRB with a set of given orthogonal waveforms is studied as a specific case. Second, a maximum likelihood (ML) estimation algorithm is proposed. The mean square error (MSE) of the ML estimation of target location and velocity is obtained by Monte Carlo simulation and it approaches CRB in the high signal-to-noise ratio (SNR) region.