Dynamic spectrum access(DSA) based on cognitive radios(CR) technique is an effective approach to address the "spectrum scarcity" issue. However, traditional CR-enabled DSA system employs only single DSA stra...Dynamic spectrum access(DSA) based on cognitive radios(CR) technique is an effective approach to address the "spectrum scarcity" issue. However, traditional CR-enabled DSA system employs only single DSA strategy, which might not be suited to the dynamic network environment. In this paper, we propose a multi-strategy DSA(MS-DSA) system, where the primary and the secondary system share spectrum resources with multiple DSA strategies simultaneously. To analyze the performance of the proposed MS-DSA system, we model it as a continuous-time Markov chain(CTMC) and derive the expressions to compute the corresponding performance metrics. Based on this, we define a utility function involving the concerns of effective throughput, interference quantity on primary users, and spectrum leasing cost. Two optimization schemes, named as spectrum allocation and false alarm probability selection, are proposed to maximize the utility function. Finally, numerical simulations are provided to validate our analysis and demonstrate that the performance can be significantly improved caused by virtues of the proposed MS-DSA system.展开更多
In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user syste...In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user systems to achieve the maximum energy efficiency in a cognitive network based on hybrid spectrum sharing,meanwhile considering the maximum transmit power,user quality of service(QoS)requirements,interference limitations,and primary user protection.The optimization of energy efficient sensing time and power allocation is formulated as a non-convex optimization problem.The Dinkelbach’s method is adopted to solve this problem and to transform the non-convex optimization problem in fractional form into an equivalent optimization problem in the form of subtraction.Then,an iterative power allocation algorithm is proposed to solve the optimization problem.The simulation results show the effectiveness of the proposed algorithms for energy-efficient resource allocation in the cognitive network.展开更多
Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed, and a fitness function is provided. Simulations are conducted using the adaptive niche immune ge...Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed, and a fitness function is provided. Simulations are conducted using the adaptive niche immune genetic algo- rithm, the simulated annealing algorithm, the quantum genetic algorithm and the simple genetic algorithm, respectively. The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation, and has quick convergence speed and strong global searching capability, which effectively reduces the system power consumption and bit error rate.展开更多
The Internet of Things (loT) is called the world' s third wave of the information industry. As the core technology of IoT, Cognitive Radio Sensor Networks (CRSN) technology can improve spectrum utilization effici...The Internet of Things (loT) is called the world' s third wave of the information industry. As the core technology of IoT, Cognitive Radio Sensor Networks (CRSN) technology can improve spectrum utilization efficiency and lay a sofid foundation for large-scale application of IoT. Reliable spectrum sensing is a crucial task of the CR. For energy de- tection, threshold will determine the probability of detection (Pd) and the probability of false alarm Pf at the same time. While the threshold increases, Pd and Pf will both decrease. In this paper we focus on the maximum of the difference of Pd and Pf, and try to find out how to determine the threshold with this precondition. Simulation results show that the proposed method can effectively approach the ideal optimal result.展开更多
To improve spectrum utilization and minimize interference to Primary User (PU), an adaptive spectrum decision method is proposed for Secondary User (SU), while taking traffic load balancing and spectrum heterogeneity ...To improve spectrum utilization and minimize interference to Primary User (PU), an adaptive spectrum decision method is proposed for Secondary User (SU), while taking traffic load balancing and spectrum heterogeneity into consideration. Long-term statistics and current sensing results are integrated into the proposed decision method of spectrum access. Two decision methods, namely probability based and sensing based, are presented, compared and followed by performance analysis in terms of delay. For probability based spectrum decision, Short-Time-Job-First (STJF) priority queuing discipline is employed to minimize average residual time and theoretical conclusion is derived in a novel way. For sensing based decision we treat the interrupted service of SU as newly incoming and re-decision process is initialized to find available spectrum in a First-Available-First-Access (FAFA) fashion. Effect of sensing error in PHY layer is also analyzed in terms of extended average residual time. Simulation results show that, for relatively low arriving rate of SU traffic, the proposed spectrum decision method yields at least a delay reduction of 39.5% compared with non-adaptive method. The proposed spectrum decision can significantly improve delay performance even facing sensing errors, which cause performance degeneration to both PU and SU.展开更多
Cooperative spectrum sensing in cog- nitive radio is investigated to improve the det- ection performance of Primary User (PU). Meanwhile, cluster-based hierarchical coop- eration is introduced for reducing the overh...Cooperative spectrum sensing in cog- nitive radio is investigated to improve the det- ection performance of Primary User (PU). Meanwhile, cluster-based hierarchical coop- eration is introduced for reducing the overhead as well as maintaining a certain level of sens- ing performance. However, in existing hierar- chically cooperative spectrum sensing algo- rithms, the robustness problem of the system is seldom considered. In this paper, we pro- pose a reputation-based hierarchically coop- erative spectrum sensing scheme in Cognitive Radio Networks (CRNs). Before spectrum sensing, clusters are grouped based on the location correlation coefficients of Secondary Users (SUs). In the proposed scheme, there are two levels of cooperation, the first one is performed within a cluster and the second one is carried out among clusters. With the reputa- tion mechanism and modified MAJORITY rule in the second level cooperation, the pro- posed scheme can not only relieve the influ- ence of the shadowing, but also eliminate the impact of the PU emulation attack on a rela- tively large scale. Simulation results show that, in the scenarios with deep-shadowing or mul- tiple attacked SUs, our proposed scheme ach- ieves a better tradeoff between the system robustness and the energy saving compared with those conventionally cooperative sensing schemes.展开更多
In cognitive radio networks(CRNs), through recruiting secondary user(SU) as friendly jammer, the secrecy rate obtained by primary user(PU) can be improved. Previous work only considered a simple scenario with a single...In cognitive radio networks(CRNs), through recruiting secondary user(SU) as friendly jammer, the secrecy rate obtained by primary user(PU) can be improved. Previous work only considered a simple scenario with a single PU in their frameworks. In this paper, we will consider a more complicated scenario with multiple PUs and try to investigate the cooperative jamming between multiple PUs and a single SU. When there are multiple PUs in CRN, in order to obtain more spectrum for data transmission, SU will cooperate with multiple PUs at the same time. Considering that both PU and SU are rational and selfish individuals, the interaction between PUs and SU is formulated as a multi-leaders and single-follower Stackelberg game, wherein PU is the leader and SU is the follower. And the Stackelberg Equilibrium(SE) is considered as the final decisions accepted by all PUs and SU. Furthermore, we also prove that when a specific condition is satisfied, the existence of SE can be guaranteed. And a Gauss-Jacobi iterative algorithm is proposed to compute a SE. Finally, simulation results are given to verify the performance and demonstrate that both of the PUs' secrecy rate and the SU's transmission rate can be improved through cooperation.展开更多
In this paper,we propose the Two-way Deep Reinforcement Learning(DRL)-Based resource allocation algorithm,which solves the problem of resource allocation in the cognitive downlink network based on the underlay mode.Se...In this paper,we propose the Two-way Deep Reinforcement Learning(DRL)-Based resource allocation algorithm,which solves the problem of resource allocation in the cognitive downlink network based on the underlay mode.Secondary users(SUs)in the cognitive network are multiplexed by a new Power Domain Sparse Code Multiple Access(PD-SCMA)scheme,and the physical resources of the cognitive base station are virtualized into two types of slices:enhanced mobile broadband(eMBB)slice and ultrareliable low latency communication(URLLC)slice.We design the Double Deep Q Network(DDQN)network output the optimal codebook assignment scheme and simultaneously use the Deep Deterministic Policy Gradient(DDPG)network output the optimal power allocation scheme.The objective is to jointly optimize the spectral efficiency of the system and the Quality of Service(QoS)of SUs.Simulation results show that the proposed algorithm outperforms the CNDDQN algorithm and modified JEERA algorithm in terms of spectral efficiency and QoS satisfaction.Additionally,compared with the Power Domain Non-orthogonal Multiple Access(PD-NOMA)slices and the Sparse Code Multiple Access(SCMA)slices,the PD-SCMA slices can dramatically enhance spectral efficiency and increase the number of accessible users.展开更多
In the trust management scheme of the distributed cognitive radio networks, the absence of the central control devices cause many problems such as a lack of standardized control for trust computation, and the absence ...In the trust management scheme of the distributed cognitive radio networks, the absence of the central control devices cause many problems such as a lack of standardized control for trust computation, and the absence of the decision makers in trust evaluation and collaborative decision making. A trust management mechanism based on the jury system for distributed cognitive radio networks is proposed in this paper. The "jury user" is designed to collaboratively examine the reputation of the cognitive user in the networks and to perform data fusion and spectrum allocation for distributed cognitive radio networks. Simulation analysis results show that the proposed scheme can ensure accuracy and fairness in trust evaluation and improve effectiveness and flexibility of spectrum allocation.展开更多
This paper introduces the research progress on the cognition flow in the National Basic Research Program of China(973 Program)under Grant No. 2009CB320400 "Research on Basic Theories and Key Technologies of Cogni...This paper introduces the research progress on the cognition flow in the National Basic Research Program of China(973 Program)under Grant No. 2009CB320400 "Research on Basic Theories and Key Technologies of Cognitive Radio Networks". We present the motivation behind the proposal of the concept of cognition flow, provide the definition, discuss the features, behaviours, representations, mathematical models, and the functions of cognition flow in Cognitive Radio Networks(CRNs). We also analyse how the cognition flow promotes the convergence of heterogeneous networks.Our group also constructed the test platform to verify the usefulness of cognition flow. The results that were simulated by computers and tested on the platform both confirm that cognition flow can realise efficient interaction of cognitive information among heterogeneous networks in CRNs, which contributes to the seamless convergence of heterogeneous networks,and significantly improves the spectrum efficiency and users' Quality of Experience(QoE).展开更多
In a cognitive radio network, the secondary users can use the spectrum holes when the primary users do not utilize the spectrum, but they must vacant the spectrum when the primary users need to transmit data on the sp...In a cognitive radio network, the secondary users can use the spectrum holes when the primary users do not utilize the spectrum, but they must vacant the spectrum when the primary users need to transmit data on the spectrum. In other words, the primary users have higher priority over the secondary users. In this paper, backlog and delay distribution bounds for both primary users and secondary users are obtained. The analysis is based on stochastic network calculus, for which, stochastic service curves are t-n-st derived for both primary users and secondary users, and the network calculus independent case analysis approach is used to find the distribution bounds. Numerical results and simulation results are also presented and discussed.展开更多
Extensive research attentions have been devoted to studying cooperative cognitive radio networks(CCRNs),where secondary users(SU)providing cooperative transmissions can be permitted by primary users(PU)to use spectrum...Extensive research attentions have been devoted to studying cooperative cognitive radio networks(CCRNs),where secondary users(SU)providing cooperative transmissions can be permitted by primary users(PU)to use spectrum.In order to maximize SU’s utility,SU may transmit its own information during the period of cooperative transmission,which stimulates the use of covert transmission against PU’s monitoring.For this sake,this article reviews the motivations of studying covert communications in CCRN.In particular,three intelligent covert transmission approaches are developed for maximizing SU’s utility in CCRNs,namely,intelligent parasitic covert transmission(IPCT),intelligent jammer aided covert transmission(IJCT)and intelligent reflecting surface assisted covert transmission(IRSC).Further,some raw performance evaluations are discussed,and a range of potential research directions are also provided.展开更多
Cognitive radio(CR) is regarded as a promising technology for providing a high spectral efficiency to mobile users by using heterogeneous wireless network architectures and dynamic spectrum access techniques.However,c...Cognitive radio(CR) is regarded as a promising technology for providing a high spectral efficiency to mobile users by using heterogeneous wireless network architectures and dynamic spectrum access techniques.However,cognitive radio networks(CRNs)may also impose some challenges due to the ever increasing complexity of network architecture,the increasing complexity with configuration and management of large-scale networks,fluctuating nature of the available spectrum,diverse Quality-of-Service(QoS)requirements of various applications,and the intensifying difficulties of centralized control,etc.Spectrum management functions with self-organization features can be used to address these challenges and realize this new network paradigm.In this paper,fundamentals of CR,including spectrum sensing,spectrum management,spectrum mobility and spectrum sharing,have been surveyed,with their paradigms of self-organization being emphasized.Variant aspects of selforganization paradigms in CRNs,including critical functionalities of Media Access Control(MAC)- and network-layer operations,are surveyed and compared.Furthermore,new directions and open problems in CRNs are also identified in this survey.展开更多
To achieve the better system performance for cooperative communication in non-orthogonal cognitive radio vehicular adhoc networks(CR-VANETs),this paper investigates the power allocation considering the interference to...To achieve the better system performance for cooperative communication in non-orthogonal cognitive radio vehicular adhoc networks(CR-VANETs),this paper investigates the power allocation considering the interference to the main system in a controllable range.We propose a three-slot one-way vehicle system model where the mobile vehicle nodes complete information interaction with the assistance of other independent nodes by borrowing the unused radio spectrum with the primary networks.The end-to-end SNR relationship in overlay and underlay cognitive communication system mode are analyzed by using two forwarding protocol,namely,decode-and-forward(DF)protocol and amplify-and-forward(AF)protocol,respectively.The system outage probability is derived and the optimal power allocation factor is obtained via seeking the minimum value of the approximation of system outage probability.The analytical results have been confirmed by means of Monte Carlo simulations.Simulation results show that the proposed system performance in terms of outage under the optimal power allocation is superior to that under the average power allocation,and is also better than that under other power allocation systems.展开更多
This paper investigates the effects of the outdated channel state information(CSI)on the secrecy performance of an underlay spectrum sharing cognitive radio networks(CRNs),where the secondary user(SU)source node(Alice...This paper investigates the effects of the outdated channel state information(CSI)on the secrecy performance of an underlay spectrum sharing cognitive radio networks(CRNs),where the secondary user(SU)source node(Alice)aims to transmit the trusted messages to the full-duplex(FD)aided SU receiver(Bob)with the assistance of cooperative relay(Relay).Considering the impact of feedback delay,outdated CSI will aggravate the system performance.To tackle such challenge,the collaborative zero-forcing beamforming(ZFB)scheme of FD technique is further introduced to implement jamming so as to confuse the eavesdropping and improve the security performance of the system.Under such setup,the exact and asymptotic expressions of the secrecy outage probability(SOP)under the outdated CSI case are derived,respectively.The results reveal that i)the outdated CSI of the SU transmission channel will decrease the diversity gain from min(NANR,NRNB)to NRwith NA,NRand NBbeing the number of antennas of Alice,Relay and Bob,respectively,ii)the introduction of FD technique can improve coding gain and enhance system performance.展开更多
Cognitive radio is considered as an efficient way to improve the spectrum efficiency. As one of its key technologies,spectrum handoff can guarantee the transmission continuity of secondary users(SUs). In this paper,we...Cognitive radio is considered as an efficient way to improve the spectrum efficiency. As one of its key technologies,spectrum handoff can guarantee the transmission continuity of secondary users(SUs). In this paper,we address a new and more generalized spectrum handoff problem in cognitive radio networks(CRNs),by considering simultaneously energy efficiency,multiple spectrum handoffs and multiple channels. Furthermore,effects of the primary users'(PUs')arrival and service rate on the target channel sequence selection are also considered. In order to obtain the energy-efficient target channel sequence,we firstly analyze the energy consumption and the number of delivered bits per hertz in the spectrum handoff process,and formulate a ratio-type energy efficiency optimization problem,which can be transformed into a parametric problem by utilizing fractional programming. Then,we propose an algorithm combining dynamic programming with bisection(DPB)algorithm to solve the energy efficiency optimization problem. Our simulation results verify that the designed target channel sequence has better performance than the existing algorithms in terms of energy efficiency.展开更多
Interference alignment(IA) is suitable for cognitive radio networks(CRNs).However, in IA spectrum sharing(SS) process of general underlay CRNs, transmit power of cognitive radio transmitters usually should be reduced ...Interference alignment(IA) is suitable for cognitive radio networks(CRNs).However, in IA spectrum sharing(SS) process of general underlay CRNs, transmit power of cognitive radio transmitters usually should be reduced to satisfy interference constraint of primary user(PU), which may lead to low signalto-noise-ratio at cognitive radio receivers(CRRs). Consequently, sum rate of cognitive users(CUs) may fall short of the theoretical maximum through IA. To solve this problem,we propose an adaptive IA SS method for general distributed multi-user multi-antenna CRNs. The relationship between interference and noise power at each CRR is analyzed according to channel state information, interference requirement of PU, and power budget of CUs. Based on the analysis, scenarios of the CRN are classified into 4 cases, and corresponding IA SS algorithms are properly designed. Transmit power adjustment, CU access control and adjusted spatial projection are used to realize IA among CUs. Compared with existing methods, the proposed method is more general because of breaking the restriction that CUs can only transmit on the idle sub-channels. Moreover, in comparison to other five IA SS methods applicable in general CRN, the proposed method leads to improved achievable sum rate of CUs while guarantees transmission of PU.展开更多
How to achieve transmissions in an energy-efficient way in multi-hop decode and forward(DF) relay cognitive radio sensor networks(CRSNs) is important since sensor nodes in CRSNs are usually battery powered. This paper...How to achieve transmissions in an energy-efficient way in multi-hop decode and forward(DF) relay cognitive radio sensor networks(CRSNs) is important since sensor nodes in CRSNs are usually battery powered. This paper aims to maximize energy efficiency(EE) by joint optimizing sensing time and power allocation in multi-channels & multihops DF relay CRSNs under constraints on outage probability and sensing performance. First, we design a channel selection scheme for sensing according to the available probabilities of multi channels. Second, we analyze the expected throughput and energy consumption and formulate the EE problem as a concave/concave fractional program. Third, coordinate ascent and Charnes-Cooper Transformation(CCT) methods are used to transform the nonlinear fractional problem into an equivalent concave problem. Subsequently, the closed form of outage probability is derived and the convergence rate of the iterative algorithm is analyzed. Finally, simulation results show that the proposed scheme can achieve effective EE.展开更多
In spectrum aggregation(SA), two or more component carriers(CCs) of different bandwidths in different bands can be aggregated to support wider transmission bandwidth. The current resource scheduling schemes for spectr...In spectrum aggregation(SA), two or more component carriers(CCs) of different bandwidths in different bands can be aggregated to support wider transmission bandwidth. The current resource scheduling schemes for spectrum aggregation are not optimal or suitable for CR based heterogeneous networks(Het Nets). Consequently, the authors propose a novel resource scheduling scheme for spectrum aggregation in CR based Het Nets, termed as cognitive radio based resource scheduling(CR-RS) scheme. CR-RS has a three-level structure. Under a dynamic traffic model, an equivalent throughput of the CCs based on the knowledge of primary users(PUs) is given. On this basis, the CR users data transmission time of each CC is equal in CR-RS. The simulation results show that CR-RS has the better performance than the current resource scheduling schemes in the CR based Het Nets. Meanwhile, CR-RS is also effective in other spectrum aggregation systems which are not CR based HetNets.展开更多
This paper investigates the uplink throughput of Cognitive Radio Cellular Networks(CRCNs).As oppose to traditional performance evaluation schemes which mainly adopt complex system level simulations,we use the theoreti...This paper investigates the uplink throughput of Cognitive Radio Cellular Networks(CRCNs).As oppose to traditional performance evaluation schemes which mainly adopt complex system level simulations,we use the theoretical framework of stochastic geometry to provide a tractable and accurate analysis of the uplink throughput in the CRCN.By modelling the positions of User Equipments(UEs)and Base Stations(BSs)as Poisson Point Processes(PPPs),we analyse and derive expressions for the link rate and the cell throughput in the Primary(PR)and Secondary(SR)networks.The expressions show that the throughput of the CRCN is mainly affected by the density ratios between the UEs and the BSs in both the PR and SR networks.Besides,a comparative analysis of the link rate between random and regular BS deployments is concluded,and the results confirm the accuracy of our analysis.Furthermore,we define the cognitive throughput gain and derive an expression which is dominated by the traffic load in the PR network.展开更多
基金supported in part by the National Natural Sciences Foundation of China (NSFC) under Grant 61525103the National Natural Sciences Foundation of China under Grant 61501140the Shenzhen Fundamental Research Project under Grant JCYJ20150930150304185
文摘Dynamic spectrum access(DSA) based on cognitive radios(CR) technique is an effective approach to address the "spectrum scarcity" issue. However, traditional CR-enabled DSA system employs only single DSA strategy, which might not be suited to the dynamic network environment. In this paper, we propose a multi-strategy DSA(MS-DSA) system, where the primary and the secondary system share spectrum resources with multiple DSA strategies simultaneously. To analyze the performance of the proposed MS-DSA system, we model it as a continuous-time Markov chain(CTMC) and derive the expressions to compute the corresponding performance metrics. Based on this, we define a utility function involving the concerns of effective throughput, interference quantity on primary users, and spectrum leasing cost. Two optimization schemes, named as spectrum allocation and false alarm probability selection, are proposed to maximize the utility function. Finally, numerical simulations are provided to validate our analysis and demonstrate that the performance can be significantly improved caused by virtues of the proposed MS-DSA system.
基金supported in part by the National Natural Science Foundation of China for Young Scholars under Grant No.61701167Young Elite Backbone Teachers in Blue and Blue Project of Jiangsu Province, China
文摘In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user systems to achieve the maximum energy efficiency in a cognitive network based on hybrid spectrum sharing,meanwhile considering the maximum transmit power,user quality of service(QoS)requirements,interference limitations,and primary user protection.The optimization of energy efficient sensing time and power allocation is formulated as a non-convex optimization problem.The Dinkelbach’s method is adopted to solve this problem and to transform the non-convex optimization problem in fractional form into an equivalent optimization problem in the form of subtraction.Then,an iterative power allocation algorithm is proposed to solve the optimization problem.The simulation results show the effectiveness of the proposed algorithms for energy-efficient resource allocation in the cognitive network.
基金Project supported by the Research Fund for Joint China-Canada Research and Development Projects of the Ministry of Scienceand Technology,China(Grant No.2010DFA11320)
文摘Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed, and a fitness function is provided. Simulations are conducted using the adaptive niche immune genetic algo- rithm, the simulated annealing algorithm, the quantum genetic algorithm and the simple genetic algorithm, respectively. The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation, and has quick convergence speed and strong global searching capability, which effectively reduces the system power consumption and bit error rate.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.60971082,60872049,60972073and60871042)the National Key Basic Research Program of China(Grant No.2009CB320400)+1 种基金the National Great Science Specific Project(Grant Nos.2009ZX03003-001,2009ZX03003-011and2010ZX03001003)Chinese Universities Scientific Fund,China
文摘The Internet of Things (loT) is called the world' s third wave of the information industry. As the core technology of IoT, Cognitive Radio Sensor Networks (CRSN) technology can improve spectrum utilization efficiency and lay a sofid foundation for large-scale application of IoT. Reliable spectrum sensing is a crucial task of the CR. For energy de- tection, threshold will determine the probability of detection (Pd) and the probability of false alarm Pf at the same time. While the threshold increases, Pd and Pf will both decrease. In this paper we focus on the maximum of the difference of Pd and Pf, and try to find out how to determine the threshold with this precondition. Simulation results show that the proposed method can effectively approach the ideal optimal result.
基金supported partially by China's National 863 Program under Grant No.2009AA01Z207
文摘To improve spectrum utilization and minimize interference to Primary User (PU), an adaptive spectrum decision method is proposed for Secondary User (SU), while taking traffic load balancing and spectrum heterogeneity into consideration. Long-term statistics and current sensing results are integrated into the proposed decision method of spectrum access. Two decision methods, namely probability based and sensing based, are presented, compared and followed by performance analysis in terms of delay. For probability based spectrum decision, Short-Time-Job-First (STJF) priority queuing discipline is employed to minimize average residual time and theoretical conclusion is derived in a novel way. For sensing based decision we treat the interrupted service of SU as newly incoming and re-decision process is initialized to find available spectrum in a First-Available-First-Access (FAFA) fashion. Effect of sensing error in PHY layer is also analyzed in terms of extended average residual time. Simulation results show that, for relatively low arriving rate of SU traffic, the proposed spectrum decision method yields at least a delay reduction of 39.5% compared with non-adaptive method. The proposed spectrum decision can significantly improve delay performance even facing sensing errors, which cause performance degeneration to both PU and SU.
基金ACKNOWLEDGEMENT This work was partially supported by the Na- tional Natural Science Foundation of China under Grant No. 61071127 and the Science and Technology Department of Zhejiang Pro- vince under Grants No. 2012C01036-1, No. 2011R10035.
文摘Cooperative spectrum sensing in cog- nitive radio is investigated to improve the det- ection performance of Primary User (PU). Meanwhile, cluster-based hierarchical coop- eration is introduced for reducing the overhead as well as maintaining a certain level of sens- ing performance. However, in existing hierar- chically cooperative spectrum sensing algo- rithms, the robustness problem of the system is seldom considered. In this paper, we pro- pose a reputation-based hierarchically coop- erative spectrum sensing scheme in Cognitive Radio Networks (CRNs). Before spectrum sensing, clusters are grouped based on the location correlation coefficients of Secondary Users (SUs). In the proposed scheme, there are two levels of cooperation, the first one is performed within a cluster and the second one is carried out among clusters. With the reputa- tion mechanism and modified MAJORITY rule in the second level cooperation, the pro- posed scheme can not only relieve the influ- ence of the shadowing, but also eliminate the impact of the PU emulation attack on a rela- tively large scale. Simulation results show that, in the scenarios with deep-shadowing or mul- tiple attacked SUs, our proposed scheme ach- ieves a better tradeoff between the system robustness and the energy saving compared with those conventionally cooperative sensing schemes.
基金supported in part by the National Key Research and Development Program of China under Grant 2016QY01W0204in part by Key Industrial Innovation Chain in Industrial Domain under Grant 2016KTZDGY-02in part by National High-Level TalentsSpecial Support Program of China under Grant CS31117200001
文摘In cognitive radio networks(CRNs), through recruiting secondary user(SU) as friendly jammer, the secrecy rate obtained by primary user(PU) can be improved. Previous work only considered a simple scenario with a single PU in their frameworks. In this paper, we will consider a more complicated scenario with multiple PUs and try to investigate the cooperative jamming between multiple PUs and a single SU. When there are multiple PUs in CRN, in order to obtain more spectrum for data transmission, SU will cooperate with multiple PUs at the same time. Considering that both PU and SU are rational and selfish individuals, the interaction between PUs and SU is formulated as a multi-leaders and single-follower Stackelberg game, wherein PU is the leader and SU is the follower. And the Stackelberg Equilibrium(SE) is considered as the final decisions accepted by all PUs and SU. Furthermore, we also prove that when a specific condition is satisfied, the existence of SE can be guaranteed. And a Gauss-Jacobi iterative algorithm is proposed to compute a SE. Finally, simulation results are given to verify the performance and demonstrate that both of the PUs' secrecy rate and the SU's transmission rate can be improved through cooperation.
基金supported by the National Natural Science Foundation of China(Grant No.61971057).
文摘In this paper,we propose the Two-way Deep Reinforcement Learning(DRL)-Based resource allocation algorithm,which solves the problem of resource allocation in the cognitive downlink network based on the underlay mode.Secondary users(SUs)in the cognitive network are multiplexed by a new Power Domain Sparse Code Multiple Access(PD-SCMA)scheme,and the physical resources of the cognitive base station are virtualized into two types of slices:enhanced mobile broadband(eMBB)slice and ultrareliable low latency communication(URLLC)slice.We design the Double Deep Q Network(DDQN)network output the optimal codebook assignment scheme and simultaneously use the Deep Deterministic Policy Gradient(DDPG)network output the optimal power allocation scheme.The objective is to jointly optimize the spectral efficiency of the system and the Quality of Service(QoS)of SUs.Simulation results show that the proposed algorithm outperforms the CNDDQN algorithm and modified JEERA algorithm in terms of spectral efficiency and QoS satisfaction.Additionally,compared with the Power Domain Non-orthogonal Multiple Access(PD-NOMA)slices and the Sparse Code Multiple Access(SCMA)slices,the PD-SCMA slices can dramatically enhance spectral efficiency and increase the number of accessible users.
基金supported by the National Natural Science Foundation of China under Grant No. 61172068
文摘In the trust management scheme of the distributed cognitive radio networks, the absence of the central control devices cause many problems such as a lack of standardized control for trust computation, and the absence of the decision makers in trust evaluation and collaborative decision making. A trust management mechanism based on the jury system for distributed cognitive radio networks is proposed in this paper. The "jury user" is designed to collaboratively examine the reputation of the cognitive user in the networks and to perform data fusion and spectrum allocation for distributed cognitive radio networks. Simulation analysis results show that the proposed scheme can ensure accuracy and fairness in trust evaluation and improve effectiveness and flexibility of spectrum allocation.
基金supported by the National Basic Research Program of China(973 Program)under Grant No.2009CB320400the National Natural Science Foundation of China under Grants No.61101117,No.61171099+2 种基金the National Key Scientific and Technological Project of China under Grant No,2012ZX03003-007the Natural Science Foundation of Jiangxi under Grant No.20132BAB201018the Fundamental Research Funds for the Central Universities under Grant No.BUPT2012RC0112
文摘This paper introduces the research progress on the cognition flow in the National Basic Research Program of China(973 Program)under Grant No. 2009CB320400 "Research on Basic Theories and Key Technologies of Cognitive Radio Networks". We present the motivation behind the proposal of the concept of cognition flow, provide the definition, discuss the features, behaviours, representations, mathematical models, and the functions of cognition flow in Cognitive Radio Networks(CRNs). We also analyse how the cognition flow promotes the convergence of heterogeneous networks.Our group also constructed the test platform to verify the usefulness of cognition flow. The results that were simulated by computers and tested on the platform both confirm that cognition flow can realise efficient interaction of cognitive information among heterogeneous networks in CRNs, which contributes to the seamless convergence of heterogeneous networks,and significantly improves the spectrum efficiency and users' Quality of Experience(QoE).
文摘In a cognitive radio network, the secondary users can use the spectrum holes when the primary users do not utilize the spectrum, but they must vacant the spectrum when the primary users need to transmit data on the spectrum. In other words, the primary users have higher priority over the secondary users. In this paper, backlog and delay distribution bounds for both primary users and secondary users are obtained. The analysis is based on stochastic network calculus, for which, stochastic service curves are t-n-st derived for both primary users and secondary users, and the network calculus independent case analysis approach is used to find the distribution bounds. Numerical results and simulation results are also presented and discussed.
基金supported by the National Natural Science Foundation of China under Grant 61825104, in part by the National Natural Science Foundation of China under Grants 61801518, 62201582in part by the National Key R&D Program of China under Grant 2022YFC3301300+3 种基金in part by the Key Research and Development Program of Shaanxi under Grant 2022KW-03in part by the Young Talent fund of University Association for Science and Technology in Shaanxi under Grant 20210111in part by the Natural Science Basic Research Program of Shaanxi under Grant 2022JQ-632in part by Innovative Cultivation Project of School of Information and Communication of National University of Defense Technology under Grant YJKT-ZD-2202
文摘Extensive research attentions have been devoted to studying cooperative cognitive radio networks(CCRNs),where secondary users(SU)providing cooperative transmissions can be permitted by primary users(PU)to use spectrum.In order to maximize SU’s utility,SU may transmit its own information during the period of cooperative transmission,which stimulates the use of covert transmission against PU’s monitoring.For this sake,this article reviews the motivations of studying covert communications in CCRN.In particular,three intelligent covert transmission approaches are developed for maximizing SU’s utility in CCRNs,namely,intelligent parasitic covert transmission(IPCT),intelligent jammer aided covert transmission(IJCT)and intelligent reflecting surface assisted covert transmission(IRSC).Further,some raw performance evaluations are discussed,and a range of potential research directions are also provided.
基金ACKNOWLEDGEMENT This work was supported by National Natural Science Foundation of China (No. 61172050), Program for New Century Excellent Talents in University (NECT-12-0774), the open research fund of National Mobile Communications Research Laboratory, Southeast University (No.2013D12), the Foundation of Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous Services. The corresponding author is Dr. Zhongshan Zhang.
文摘Cognitive radio(CR) is regarded as a promising technology for providing a high spectral efficiency to mobile users by using heterogeneous wireless network architectures and dynamic spectrum access techniques.However,cognitive radio networks(CRNs)may also impose some challenges due to the ever increasing complexity of network architecture,the increasing complexity with configuration and management of large-scale networks,fluctuating nature of the available spectrum,diverse Quality-of-Service(QoS)requirements of various applications,and the intensifying difficulties of centralized control,etc.Spectrum management functions with self-organization features can be used to address these challenges and realize this new network paradigm.In this paper,fundamentals of CR,including spectrum sensing,spectrum management,spectrum mobility and spectrum sharing,have been surveyed,with their paradigms of self-organization being emphasized.Variant aspects of selforganization paradigms in CRNs,including critical functionalities of Media Access Control(MAC)- and network-layer operations,are surveyed and compared.Furthermore,new directions and open problems in CRNs are also identified in this survey.
基金funded by the Six Talent Peaks Project in Jiangsu Province(No.KTHY-052)the National Natural Science Foundation of China(No.61971245)+1 种基金the Science and Technology program of Nantong(Contract No.JC2018048)the Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province&Key Lab of Modern Optical Technologies of Education Ministry of China,Soochow University(No.KJS1858).
文摘To achieve the better system performance for cooperative communication in non-orthogonal cognitive radio vehicular adhoc networks(CR-VANETs),this paper investigates the power allocation considering the interference to the main system in a controllable range.We propose a three-slot one-way vehicle system model where the mobile vehicle nodes complete information interaction with the assistance of other independent nodes by borrowing the unused radio spectrum with the primary networks.The end-to-end SNR relationship in overlay and underlay cognitive communication system mode are analyzed by using two forwarding protocol,namely,decode-and-forward(DF)protocol and amplify-and-forward(AF)protocol,respectively.The system outage probability is derived and the optimal power allocation factor is obtained via seeking the minimum value of the approximation of system outage probability.The analytical results have been confirmed by means of Monte Carlo simulations.Simulation results show that the proposed system performance in terms of outage under the optimal power allocation is superior to that under the average power allocation,and is also better than that under other power allocation systems.
基金supported by the National Natural Science Foundation of China(No.62201606 and No.62071486)the Project of Science and Technology Planning of Guizhou Province(No.[2020]-030)+3 种基金the Project of Science and Technology Fund of Guizhou Provincial Health Commission(gzwkj2022524)the Project of Youth Science and Technology Talent Growth Guizhou Provincial Department of Education(No.KY[2021]230)the Key Research Base Project of Humanities and Social Sciences of Education Department of Guizhou Provincethe Project of Science and Technology Planning of Zunyi City(No.2022-381 and No.2022-384)。
文摘This paper investigates the effects of the outdated channel state information(CSI)on the secrecy performance of an underlay spectrum sharing cognitive radio networks(CRNs),where the secondary user(SU)source node(Alice)aims to transmit the trusted messages to the full-duplex(FD)aided SU receiver(Bob)with the assistance of cooperative relay(Relay).Considering the impact of feedback delay,outdated CSI will aggravate the system performance.To tackle such challenge,the collaborative zero-forcing beamforming(ZFB)scheme of FD technique is further introduced to implement jamming so as to confuse the eavesdropping and improve the security performance of the system.Under such setup,the exact and asymptotic expressions of the secrecy outage probability(SOP)under the outdated CSI case are derived,respectively.The results reveal that i)the outdated CSI of the SU transmission channel will decrease the diversity gain from min(NANR,NRNB)to NRwith NA,NRand NBbeing the number of antennas of Alice,Relay and Bob,respectively,ii)the introduction of FD technique can improve coding gain and enhance system performance.
基金Heilongjiang Province Natural Science Foundation(Grant No.F2016019);National Natural Science Foundation of China(Grant No.61571162);Major National Science and Technology Project(2015ZX03004002004); China Postdoctoral Science Foundation(Grant No.2014M561347).
文摘Cognitive radio is considered as an efficient way to improve the spectrum efficiency. As one of its key technologies,spectrum handoff can guarantee the transmission continuity of secondary users(SUs). In this paper,we address a new and more generalized spectrum handoff problem in cognitive radio networks(CRNs),by considering simultaneously energy efficiency,multiple spectrum handoffs and multiple channels. Furthermore,effects of the primary users'(PUs')arrival and service rate on the target channel sequence selection are also considered. In order to obtain the energy-efficient target channel sequence,we firstly analyze the energy consumption and the number of delivered bits per hertz in the spectrum handoff process,and formulate a ratio-type energy efficiency optimization problem,which can be transformed into a parametric problem by utilizing fractional programming. Then,we propose an algorithm combining dynamic programming with bisection(DPB)algorithm to solve the energy efficiency optimization problem. Our simulation results verify that the designed target channel sequence has better performance than the existing algorithms in terms of energy efficiency.
基金supported by National Natuvertexesral Science Foundation of China under Grant 61201233 61271262 and 61701043
文摘Interference alignment(IA) is suitable for cognitive radio networks(CRNs).However, in IA spectrum sharing(SS) process of general underlay CRNs, transmit power of cognitive radio transmitters usually should be reduced to satisfy interference constraint of primary user(PU), which may lead to low signalto-noise-ratio at cognitive radio receivers(CRRs). Consequently, sum rate of cognitive users(CUs) may fall short of the theoretical maximum through IA. To solve this problem,we propose an adaptive IA SS method for general distributed multi-user multi-antenna CRNs. The relationship between interference and noise power at each CRR is analyzed according to channel state information, interference requirement of PU, and power budget of CUs. Based on the analysis, scenarios of the CRN are classified into 4 cases, and corresponding IA SS algorithms are properly designed. Transmit power adjustment, CU access control and adjusted spatial projection are used to realize IA among CUs. Compared with existing methods, the proposed method is more general because of breaking the restriction that CUs can only transmit on the idle sub-channels. Moreover, in comparison to other five IA SS methods applicable in general CRN, the proposed method leads to improved achievable sum rate of CUs while guarantees transmission of PU.
基金supported by the National Nature Science Foundation of China. (Grant No. 61771410)
文摘How to achieve transmissions in an energy-efficient way in multi-hop decode and forward(DF) relay cognitive radio sensor networks(CRSNs) is important since sensor nodes in CRSNs are usually battery powered. This paper aims to maximize energy efficiency(EE) by joint optimizing sensing time and power allocation in multi-channels & multihops DF relay CRSNs under constraints on outage probability and sensing performance. First, we design a channel selection scheme for sensing according to the available probabilities of multi channels. Second, we analyze the expected throughput and energy consumption and formulate the EE problem as a concave/concave fractional program. Third, coordinate ascent and Charnes-Cooper Transformation(CCT) methods are used to transform the nonlinear fractional problem into an equivalent concave problem. Subsequently, the closed form of outage probability is derived and the convergence rate of the iterative algorithm is analyzed. Finally, simulation results show that the proposed scheme can achieve effective EE.
基金supported by Major National Science and Technology Project(2014ZX03004003-005)Municipal Exceptional Academic Leaders Foundation (2014RFXXJ002)China Postdoctoral Science Foundation (2014M561347)
文摘In spectrum aggregation(SA), two or more component carriers(CCs) of different bandwidths in different bands can be aggregated to support wider transmission bandwidth. The current resource scheduling schemes for spectrum aggregation are not optimal or suitable for CR based heterogeneous networks(Het Nets). Consequently, the authors propose a novel resource scheduling scheme for spectrum aggregation in CR based Het Nets, termed as cognitive radio based resource scheduling(CR-RS) scheme. CR-RS has a three-level structure. Under a dynamic traffic model, an equivalent throughput of the CCs based on the knowledge of primary users(PUs) is given. On this basis, the CR users data transmission time of each CC is equal in CR-RS. The simulation results show that CR-RS has the better performance than the current resource scheduling schemes in the CR based Het Nets. Meanwhile, CR-RS is also effective in other spectrum aggregation systems which are not CR based HetNets.
基金supported by the National Key Basic Research Program of China (973 Program)under Grant No. 2009CB320401the National Natural Science Foundation of China under Grants No. 61171099, No. 61101117+1 种基金the National Key Scientific and Technological Project of China under Grants No. 2012ZX03004005-002, No. 2012ZX03003-007the Fundamental Research Funds for the Central Universities under Grant No. BUPT2012RC0112
文摘This paper investigates the uplink throughput of Cognitive Radio Cellular Networks(CRCNs).As oppose to traditional performance evaluation schemes which mainly adopt complex system level simulations,we use the theoretical framework of stochastic geometry to provide a tractable and accurate analysis of the uplink throughput in the CRCN.By modelling the positions of User Equipments(UEs)and Base Stations(BSs)as Poisson Point Processes(PPPs),we analyse and derive expressions for the link rate and the cell throughput in the Primary(PR)and Secondary(SR)networks.The expressions show that the throughput of the CRCN is mainly affected by the density ratios between the UEs and the BSs in both the PR and SR networks.Besides,a comparative analysis of the link rate between random and regular BS deployments is concluded,and the results confirm the accuracy of our analysis.Furthermore,we define the cognitive throughput gain and derive an expression which is dominated by the traffic load in the PR network.