The high performance of an electrode relies largely on a scrupulous design of nanoarchitectures and smart hybridization of electroactive materials.A porous core-shell architecture in which one-dimensional cobalt oxide...The high performance of an electrode relies largely on a scrupulous design of nanoarchitectures and smart hybridization of electroactive materials.A porous core-shell architecture in which one-dimensional cobalt oxide(Co_3O_4)nanowire cores are grown on nickel foam prior to the growth of layered double hydroxide(LDH)shells is fabricated.Hydrothermal precipitation and thermal treatment result in homogeneous forests of 70-nm diameter Co_3O_4 nanowire,which are wrapped in LDH-nanosheet-built porous covers through a liquid phase deposition method.Due to the unique core-shell architecture and the synergetic effects of Co_3O_4and NiAl-LDH,the obtained Co_3O_4@LDH electrode exhibits a capacitance of 1 133.3F/g at a current density of 2A/g and 688.8F/g at 20A/g(5.3F/cm^(2 )at 9.4mA/cm^(2 )and 3.2F/cm^(2 )at 94mA/cm^2),which are better than those of the individual Co_3O_4nanowire.Moreover,the electrode shows excellent cycling performance with a retention rate of 90.4%after 3 000cycles at a current density of 20A/g.展开更多
Carbon quantum dots(CQDs)as a new class of emerging materials have gradually drawn researchers’concern in recent years.In this work,the graphitic CQDs are prepared through a scalable approach,achieving a high yield w...Carbon quantum dots(CQDs)as a new class of emerging materials have gradually drawn researchers’concern in recent years.In this work,the graphitic CQDs are prepared through a scalable approach,achieving a high yield with more than 50%.The obtained CQDs are further used as structure-directing and conductive agents to synthesize novel N,S-CQDs/NiCo2S4 composite cathode materials,manifesting the enhanced electrochemical properties resulted from the synergistic effect of highly conductive N,S-codoped CQDs offering fast electronic transport and unique micro-/nanostructured NiCo2S4 microspheres with Faradaic redox characteristic contributing large capacity.Moreover,the nitrogen-doped reduced graphene oxide(N-rGO)/Fe2O3 composite anode materials exhibit ultrahigh specific capacity as well as significantly improved rate property and cycle performance originating from the high-capacity prism-like Fe2O3 hexahedrons tightly wrapped by highly conductive N-rGO.A novel alkaline aqueous battery assembled by these materials displays a specific energy(50.2 Wh kg^−1),ultrahigh specific power(9.7 kW kg^−1)and excellent cycling performance with 91.5%of capacity retention at 3 A g^−1 for 5000 cycles.The present research offers a valuable guidance for the exploitation of advanced energy storage devices by the rational design and selection of battery/capacitive composite materials.展开更多
Fiber-supercapacitors(FSCs)are promising power sources for miniature portable and wearable electronic devices.However,the development and practical application of these FSCs have been severely hindered by their low vo...Fiber-supercapacitors(FSCs)are promising power sources for miniature portable and wearable electronic devices.However,the development and practical application of these FSCs have been severely hindered by their low volumetric capacitance and narrow operating voltage.In this work,vertically aligned nickel cobalt sulfide(Ni Co2S4)nanowires grown on carbon nanotube(CNT)fibers were achieved through an in-situ two-step hydrothermal reaction method.The as-prepared Ni Co2S4@CNT fiber electrode exhibits a high volumetric capacitance of 2332 F cm-3,benefiting from its superior electric conductivity,large surface area,and rich Faradic redox reaction sites.Furthermore,a Ni Co2S4@CNT//VN@CNT(vanadium nitride nanosheets grown on CNT fibers)asymmetric fiber-supercapacitor(AFSC)was successfully fabricated.The device exhibits an operating voltage up to 1.6 V and a high volumetric energy density of 30.64m Wh cm-3.The device also possesses outstanding flexibility as evidenced by no obvious performance degradation under various bending angles and maintaining high capacitance after 5000 bending cycles.This work promotes the practical application of flexible wearable energy-storage devices.展开更多
Generally,the catalytic overpotentials of hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)are unavoidable because of the low charge transfer.In this work,two strategies of alloying of Co with Ni and ...Generally,the catalytic overpotentials of hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)are unavoidable because of the low charge transfer.In this work,two strategies of alloying of Co with Ni and enclosing of electrocatalysts with carbonaceous materials were both used to accelerate the catalytic efficiency of cobalt selenide for water splitting.The nitrogen-doped carbon(NC)layer improves the reaction kinetics by efficient charge transfer.The alloying of metal into composited electrocatalysts can modify the electronic properties of host materials,thereby tuning the adsorption behavior of intermediate and improving the electrocatalytic activity.As expected,Nyquist plots reveal that the charge-transfer resistance(Rct)of nickel cobalt selenide encapsulated into nitrogen-doped carbon layer(CoNiSe/NC-3,Co:Ni=1:1)are just 5 and 9 for HER and OER,respectively,which are much lower than those of CoSe/NC-1(Co:Ni=1:0)(81 and 138)and CoNiSe/NC-3 without NC(CoNiSe-3)(54 and 25).With the high charge transfer and porous structure,CoNiSe/NC-3 shows good performance for both HER and OER.When current density reaches 10 m A cm-2,only 100 and 270 mV overpotentials are required for HER and OER,respectively.With the potential of 1.65 V,full water splitting also can be catalyzed by Co Ni Se/NC-3 with current density of 20 m A cm-2,suggesting that CoNiSe/NC-3 could be used as replacement for noble metal electrocatalysts.展开更多
Four perovskite-type complex oxides (LaNiO_3, La_2NiO_4, LaCoO_3 andLa_2CoO_4) were successfully prepared using two sol-gel methods, the Pechini method (PC) and thecitric acid complexing method (CC). The catalysts wer...Four perovskite-type complex oxides (LaNiO_3, La_2NiO_4, LaCoO_3 andLa_2CoO_4) were successfully prepared using two sol-gel methods, the Pechini method (PC) and thecitric acid complexing method (CC). The catalysts were characterized by XRD and TPR. Afterreduction, the activity of the catalysts in the CO_2 reforming of methane was tested. Ni-basedcatalysts from La_2NiO_4 precursors were the most active and stable catalyst after calcination above850 ℃, which gave a methane conversion of 0.025 mmol/(g·s) for those prepared by the PC methodand 0.020 mmol/(g·s) by the CC method. It was proposed that the well-defined structure and lowerreducibility is responsible for the unusual catalytic behavior observed over the pre-reducedLa2NiO_4 catalyst.展开更多
The Acidithiobacillus ferrooxidans (At. f) and Acidithiobacillus thiooxidans (At. t ) were used in bio-dissolution experiments of heavy metals in spent MH/Ni batteries. The influences of the initial pH value, the ...The Acidithiobacillus ferrooxidans (At. f) and Acidithiobacillus thiooxidans (At. t ) were used in bio-dissolution experiments of heavy metals in spent MH/Ni batteries. The influences of the initial pH value, the concentration of electrode materials, the temperature and substrate concentration on the leaching rate of heavy metal Ni, Co have been investigated. The obtained results indicate that the efficiency of nickel extrac- tion and cobalt extraction is dependent on all of the mentioned factors. Especially, the initial pH value and the temperature have more effect than other factors for these microorganisms. In addition, the results show that the optimal leaching rate of Ni and Co in the spent MH/Ni batteries reaches to 95.7 % and 72.4 % respectively after 20 days under the conditions of the initial pH value 1.0, concentration of electrode materials 1.0 %, temperature 30°C and substrate(sulfur) concentration 4.0 g'L^-1.展开更多
Although lithium(Li)metal delivers the highest theoretical capacity as a battery anode,its high reactivity can generate Li dendrites and"dead"Li during cycling,resulting in poor reversibility and low Li util...Although lithium(Li)metal delivers the highest theoretical capacity as a battery anode,its high reactivity can generate Li dendrites and"dead"Li during cycling,resulting in poor reversibility and low Li utilization.Inducing uniform Li plating/stripping is the core of solving these problems.Herein,we design a highly lithiophilic carbon film with an outer sheath of the nanoneedle arrays to induce homogeneous Li plating/stripping.The excellent conductivity and 3D framework of the carbon film not only offer fast charge transport across the entire electrode but also mitigate the volume change of Li metal during cycling.The abundant lithiophilic sites ensure stable Li plating/stripping,thereby inhibiting the Li dendritic growth and"dead"Li formation.The resulting composite anode allows for stable Li stripping/plating under 0.5 mA cm^(-2) with a capacity of 0.5 mA h cm^(-2) for 4000 h and 3 mA cm^(-2) with a capacity of3 mA h cm^(-2) for 1000 h.The Ex-SEM analysis reveals that lithiophilic property is different at the bottom,top,or channel in the structu re,which can regulate a bottom-up uniform Li deposition behavior.Full cells paired with LFP show a stable capacity of 155 mA h g^(-1) under a current density of 0.5C.The pouch cell can keep powering light-emitting diode even under 180°bending,suggesting its good flexibility and great practical applications.展开更多
The rapid development of portable and wearable electronics has called for novel flexible electrodes with superior performance.The development of flexible electrode materials with excellent mechanical and electrochemic...The rapid development of portable and wearable electronics has called for novel flexible electrodes with superior performance.The development of flexible electrode materials with excellent mechanical and electrochemical properties has become one of the key factors for this goal.Here,a Ni_(x)Co_(y)-silicate@CNTs film is developed as a flexible anode for lithium ion batteries(LIBs).On this film,Ni_(x)Co_(y)-silicate nanosheets are firmly and intimately anchored on the surface of CNTs,which have a 3D network structure and link the adjacent nanosheets together.Benefitted from this,the composite film is not only sufficient to withstand various deformations due to its excellent flexibility but also has excellent electrochemical properties,in terms of high reversible capacity of 1047 mAh g^(-1) at 0.1 A g^(-1) as well as a high rate and cycling performance(capacity retention up to 78.13% after 140 cycles).The pouch-type full flexible LIB using this material can stably operate under various bending conditions,showing the great potential of this 3 D Ni_(x)Co_(y)-silicate@CNTs film for flexible energy storage devices with high durability.展开更多
Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient elec...Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient electrode materials is the key to improve the performance of supercapacitors.As the battery-type materials,transition metal phosphides(TMPs)possess high theoretical specific capacity,good electrical conductivity and superior structural stability,which have been extensively studied to be electrode materials for supercapacitors.In this review,we summarize the up-to-date progress on TMPs materials from diversified synthetic methods,diverse nanostructures and several prominent TMPs and their composites in application of supercapacitors.In the end,we also propose the remaining challenges toward the rational discovery and synthesis of high-performance TMP electrodes materials for energy storage.展开更多
镍钴氢氧化物由于理论比容量高、经济效益良好、来源广泛等优点,被广泛应用于镍锌电池中作为电极材料。本工作采用共沉淀法,调控具有不同镍钴比例的硝酸盐溶液,在室温环境下一步合成镍钴双金属氢氧化物,并将其制备成镍锌电池正极材料。...镍钴氢氧化物由于理论比容量高、经济效益良好、来源广泛等优点,被广泛应用于镍锌电池中作为电极材料。本工作采用共沉淀法,调控具有不同镍钴比例的硝酸盐溶液,在室温环境下一步合成镍钴双金属氢氧化物,并将其制备成镍锌电池正极材料。采用X射线衍射仪(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)等对所合成的样品进行表征,观察其微观形貌结构,采用电化学工作站等研究其作为镍锌电池电极材料的电化学性能。研究发现,采用高浓度Na OH溶液作为电解液,比其他通过共沉淀法所制备的镍钴氢氧化物在镍锌电池中所表现出的容量更高。结果表明,当镍钴投料比为4∶1时,样品具有最为出色的容量表现,其中,Ni_(4)Co_(1)-LDH样品在电流密度为0.5 A/g时容量可以达到327.9 m Ah/g。将其作为正极材料、锌箔作为负极,与高浓度的Na OH溶液一起组装成镍锌电池进行电化学测试,在0.5 A/g电流密度下具有230.7 m Ah/g的容量,该研究兼具材料合成快速和性能表现良好等优点,研究结果有望为镍锌电池性能优化提供新思路。展开更多
基金supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education,Science and Technology (No.2014R1A1A2055740)the Start-up Research Grant(No.SRG2015-00057-FST)
文摘The high performance of an electrode relies largely on a scrupulous design of nanoarchitectures and smart hybridization of electroactive materials.A porous core-shell architecture in which one-dimensional cobalt oxide(Co_3O_4)nanowire cores are grown on nickel foam prior to the growth of layered double hydroxide(LDH)shells is fabricated.Hydrothermal precipitation and thermal treatment result in homogeneous forests of 70-nm diameter Co_3O_4 nanowire,which are wrapped in LDH-nanosheet-built porous covers through a liquid phase deposition method.Due to the unique core-shell architecture and the synergetic effects of Co_3O_4and NiAl-LDH,the obtained Co_3O_4@LDH electrode exhibits a capacitance of 1 133.3F/g at a current density of 2A/g and 688.8F/g at 20A/g(5.3F/cm^(2 )at 9.4mA/cm^(2 )and 3.2F/cm^(2 )at 94mA/cm^2),which are better than those of the individual Co_3O_4nanowire.Moreover,the electrode shows excellent cycling performance with a retention rate of 90.4%after 3 000cycles at a current density of 20A/g.
基金financially supported by National Natural Science Foundation of China(21601057)Hunan Provincial Natural Science Foundation of China(2018JJ3116)Excellent Youth Fund of Hunan Provincial Education Department(18B298)
文摘Carbon quantum dots(CQDs)as a new class of emerging materials have gradually drawn researchers’concern in recent years.In this work,the graphitic CQDs are prepared through a scalable approach,achieving a high yield with more than 50%.The obtained CQDs are further used as structure-directing and conductive agents to synthesize novel N,S-CQDs/NiCo2S4 composite cathode materials,manifesting the enhanced electrochemical properties resulted from the synergistic effect of highly conductive N,S-codoped CQDs offering fast electronic transport and unique micro-/nanostructured NiCo2S4 microspheres with Faradaic redox characteristic contributing large capacity.Moreover,the nitrogen-doped reduced graphene oxide(N-rGO)/Fe2O3 composite anode materials exhibit ultrahigh specific capacity as well as significantly improved rate property and cycle performance originating from the high-capacity prism-like Fe2O3 hexahedrons tightly wrapped by highly conductive N-rGO.A novel alkaline aqueous battery assembled by these materials displays a specific energy(50.2 Wh kg^−1),ultrahigh specific power(9.7 kW kg^−1)and excellent cycling performance with 91.5%of capacity retention at 3 A g^−1 for 5000 cycles.The present research offers a valuable guidance for the exploitation of advanced energy storage devices by the rational design and selection of battery/capacitive composite materials.
基金funding support from the CASQueensland Collaborative Science Fund(121E32KYSB20160032)the National Natural Science Foundation of China(No.21403287,No.21433013,51402345,21773291)+1 种基金the National Key R&D Program of China(2016YFB0100100)the CAS-DOE Joint Research Program(121E32KYSB20150004)。
文摘Fiber-supercapacitors(FSCs)are promising power sources for miniature portable and wearable electronic devices.However,the development and practical application of these FSCs have been severely hindered by their low volumetric capacitance and narrow operating voltage.In this work,vertically aligned nickel cobalt sulfide(Ni Co2S4)nanowires grown on carbon nanotube(CNT)fibers were achieved through an in-situ two-step hydrothermal reaction method.The as-prepared Ni Co2S4@CNT fiber electrode exhibits a high volumetric capacitance of 2332 F cm-3,benefiting from its superior electric conductivity,large surface area,and rich Faradic redox reaction sites.Furthermore,a Ni Co2S4@CNT//VN@CNT(vanadium nitride nanosheets grown on CNT fibers)asymmetric fiber-supercapacitor(AFSC)was successfully fabricated.The device exhibits an operating voltage up to 1.6 V and a high volumetric energy density of 30.64m Wh cm-3.The device also possesses outstanding flexibility as evidenced by no obvious performance degradation under various bending angles and maintaining high capacitance after 5000 bending cycles.This work promotes the practical application of flexible wearable energy-storage devices.
基金financial support by the National Natural Science Foundation of China (21605015)the Development Project of Science and Technology of Jilin Province (20170101176JC)+3 种基金the Fundamental Research Funds for the Central Universities (2412017BJ003)the Recruitment Program of Global Youth Experts, the Jilin Provincial Department of Educationthe start-up funds from Northeast Normal Universitythe service support from Analysis and Testing Center of Northeast Normal University
文摘Generally,the catalytic overpotentials of hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)are unavoidable because of the low charge transfer.In this work,two strategies of alloying of Co with Ni and enclosing of electrocatalysts with carbonaceous materials were both used to accelerate the catalytic efficiency of cobalt selenide for water splitting.The nitrogen-doped carbon(NC)layer improves the reaction kinetics by efficient charge transfer.The alloying of metal into composited electrocatalysts can modify the electronic properties of host materials,thereby tuning the adsorption behavior of intermediate and improving the electrocatalytic activity.As expected,Nyquist plots reveal that the charge-transfer resistance(Rct)of nickel cobalt selenide encapsulated into nitrogen-doped carbon layer(CoNiSe/NC-3,Co:Ni=1:1)are just 5 and 9 for HER and OER,respectively,which are much lower than those of CoSe/NC-1(Co:Ni=1:0)(81 and 138)and CoNiSe/NC-3 without NC(CoNiSe-3)(54 and 25).With the high charge transfer and porous structure,CoNiSe/NC-3 shows good performance for both HER and OER.When current density reaches 10 m A cm-2,only 100 and 270 mV overpotentials are required for HER and OER,respectively.With the potential of 1.65 V,full water splitting also can be catalyzed by Co Ni Se/NC-3 with current density of 20 m A cm-2,suggesting that CoNiSe/NC-3 could be used as replacement for noble metal electrocatalysts.
文摘Four perovskite-type complex oxides (LaNiO_3, La_2NiO_4, LaCoO_3 andLa_2CoO_4) were successfully prepared using two sol-gel methods, the Pechini method (PC) and thecitric acid complexing method (CC). The catalysts were characterized by XRD and TPR. Afterreduction, the activity of the catalysts in the CO_2 reforming of methane was tested. Ni-basedcatalysts from La_2NiO_4 precursors were the most active and stable catalyst after calcination above850 ℃, which gave a methane conversion of 0.025 mmol/(g·s) for those prepared by the PC methodand 0.020 mmol/(g·s) by the CC method. It was proposed that the well-defined structure and lowerreducibility is responsible for the unusual catalytic behavior observed over the pre-reducedLa2NiO_4 catalyst.
基金Sponsored by the National Basic Research Program of China (2002CB211800)
文摘The Acidithiobacillus ferrooxidans (At. f) and Acidithiobacillus thiooxidans (At. t ) were used in bio-dissolution experiments of heavy metals in spent MH/Ni batteries. The influences of the initial pH value, the concentration of electrode materials, the temperature and substrate concentration on the leaching rate of heavy metal Ni, Co have been investigated. The obtained results indicate that the efficiency of nickel extrac- tion and cobalt extraction is dependent on all of the mentioned factors. Especially, the initial pH value and the temperature have more effect than other factors for these microorganisms. In addition, the results show that the optimal leaching rate of Ni and Co in the spent MH/Ni batteries reaches to 95.7 % and 72.4 % respectively after 20 days under the conditions of the initial pH value 1.0, concentration of electrode materials 1.0 %, temperature 30°C and substrate(sulfur) concentration 4.0 g'L^-1.
基金supported by the National Natural Science Foundation of China(31870570)the Science and Technology Plan of Fujian Provincial,China(2020H4026,2022G02020 and 2022H6002)+1 种基金the Science and Technology Plan of Xiamen(3502Z20203005)the Scientific Research Start-up Funding for Special Professor of Minjiang Scholars。
文摘Although lithium(Li)metal delivers the highest theoretical capacity as a battery anode,its high reactivity can generate Li dendrites and"dead"Li during cycling,resulting in poor reversibility and low Li utilization.Inducing uniform Li plating/stripping is the core of solving these problems.Herein,we design a highly lithiophilic carbon film with an outer sheath of the nanoneedle arrays to induce homogeneous Li plating/stripping.The excellent conductivity and 3D framework of the carbon film not only offer fast charge transport across the entire electrode but also mitigate the volume change of Li metal during cycling.The abundant lithiophilic sites ensure stable Li plating/stripping,thereby inhibiting the Li dendritic growth and"dead"Li formation.The resulting composite anode allows for stable Li stripping/plating under 0.5 mA cm^(-2) with a capacity of 0.5 mA h cm^(-2) for 4000 h and 3 mA cm^(-2) with a capacity of3 mA h cm^(-2) for 1000 h.The Ex-SEM analysis reveals that lithiophilic property is different at the bottom,top,or channel in the structu re,which can regulate a bottom-up uniform Li deposition behavior.Full cells paired with LFP show a stable capacity of 155 mA h g^(-1) under a current density of 0.5C.The pouch cell can keep powering light-emitting diode even under 180°bending,suggesting its good flexibility and great practical applications.
基金supported by the National Natural Science Foundation of China(No.51072130,51502045,and 21905202)the Australian Research Council(ARC)through Discovery Early Career Researcher Award(DECRA,No.DE170100871)program。
文摘The rapid development of portable and wearable electronics has called for novel flexible electrodes with superior performance.The development of flexible electrode materials with excellent mechanical and electrochemical properties has become one of the key factors for this goal.Here,a Ni_(x)Co_(y)-silicate@CNTs film is developed as a flexible anode for lithium ion batteries(LIBs).On this film,Ni_(x)Co_(y)-silicate nanosheets are firmly and intimately anchored on the surface of CNTs,which have a 3D network structure and link the adjacent nanosheets together.Benefitted from this,the composite film is not only sufficient to withstand various deformations due to its excellent flexibility but also has excellent electrochemical properties,in terms of high reversible capacity of 1047 mAh g^(-1) at 0.1 A g^(-1) as well as a high rate and cycling performance(capacity retention up to 78.13% after 140 cycles).The pouch-type full flexible LIB using this material can stably operate under various bending conditions,showing the great potential of this 3 D Ni_(x)Co_(y)-silicate@CNTs film for flexible energy storage devices with high durability.
基金supported by National Undergraduate Training Programs for Innovations[grant number 202210225259]the Outstanding Youth Project of Natural Science Foundation in Heilongjiang Province(YQ2022E040)+3 种基金the Shandong Provincial Natural Science Foundation(ZR2022ME166)the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province(LBH-Q20023)the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(UNPYSCT-2020197)the 111 Project(B20088).
文摘Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient electrode materials is the key to improve the performance of supercapacitors.As the battery-type materials,transition metal phosphides(TMPs)possess high theoretical specific capacity,good electrical conductivity and superior structural stability,which have been extensively studied to be electrode materials for supercapacitors.In this review,we summarize the up-to-date progress on TMPs materials from diversified synthetic methods,diverse nanostructures and several prominent TMPs and their composites in application of supercapacitors.In the end,we also propose the remaining challenges toward the rational discovery and synthesis of high-performance TMP electrodes materials for energy storage.
文摘镍钴氢氧化物由于理论比容量高、经济效益良好、来源广泛等优点,被广泛应用于镍锌电池中作为电极材料。本工作采用共沉淀法,调控具有不同镍钴比例的硝酸盐溶液,在室温环境下一步合成镍钴双金属氢氧化物,并将其制备成镍锌电池正极材料。采用X射线衍射仪(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)等对所合成的样品进行表征,观察其微观形貌结构,采用电化学工作站等研究其作为镍锌电池电极材料的电化学性能。研究发现,采用高浓度Na OH溶液作为电解液,比其他通过共沉淀法所制备的镍钴氢氧化物在镍锌电池中所表现出的容量更高。结果表明,当镍钴投料比为4∶1时,样品具有最为出色的容量表现,其中,Ni_(4)Co_(1)-LDH样品在电流密度为0.5 A/g时容量可以达到327.9 m Ah/g。将其作为正极材料、锌箔作为负极,与高浓度的Na OH溶液一起组装成镍锌电池进行电化学测试,在0.5 A/g电流密度下具有230.7 m Ah/g的容量,该研究兼具材料合成快速和性能表现良好等优点,研究结果有望为镍锌电池性能优化提供新思路。