Adding polypropylene(PP)fibers and coarse aggregates has become a popular way to enhance the strength and stability of the cemented tailings backfilling(CTB)body.It is essential to explore the influence of tailings-ag...Adding polypropylene(PP)fibers and coarse aggregates has become a popular way to enhance the strength and stability of the cemented tailings backfilling(CTB)body.It is essential to explore the influence of tailings-aggregate ratio and fiber content on the mechanical properties of CTB samples.The comprehensive tests of the unconfined compressive strength(UCS),slump and microstructure were designed,and the regression models were established to characterize the effect of the strength,ductility and fluidity.The results indicate that the tailings-aggregate ratio of 5:5 and PP fiber content of 0.5 kg/m^(3) are the optimum point considering the UCS,cracking strain,peak strain and post-peak ductility.The tailings-aggregate ratio is consistent with the unary quadratic to the UCS and a linear model with a negative slope to the slump.Microstructural analysis indicates that PP fiber tends to bridge the cracks and rod-mill sand to serve as the skeleton of the paste matrix,which can enhance the compactness and improve the ductility of the CTB.The results presented here are of great significance to the understanding and application of coarse aggregates and fibers to improve the mechanical properties of CTB.展开更多
In order to establish a new method for measuring the dimensions of coarse aggregates, five different-size flat and elongated (F&E) coarse aggregates were glued into two specimens by epoxy resin, respectively, and ...In order to establish a new method for measuring the dimensions of coarse aggregates, five different-size flat and elongated (F&E) coarse aggregates were glued into two specimens by epoxy resin, respectively, and slice images were obtained by X-ray CT, then the aggregates were extracted by the fuzzy c-means clustering algorithm. Attributions of the particle on different cross-sections were determined by the ‘overlap area method’. And unified three-dimensional Cartesian coordinate system was established based on continuous slice images. The coefficient values of spherical harmonics descriptor representing particles surface profile were gained, then each scanned particle was represented by 60×120 discrete points conformably with spherical harmonics descriptor. The chord length and direction angles were determined by the calculation. With the major axis (L) and orthogonal axis (W and T), the calculated results were compared with those measured by caliper. It is concluded that the new L, W, and T dimension measuring method is able to take the place of the present manual measurement.展开更多
基金Project(51722401)supported by the National Science Foundation for Excellent Young Scholars of ChinaProject(51334001)supported by the Key Program of National Natural Science Foundation of ChinaProject(FRF-TP-18-003C1)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Adding polypropylene(PP)fibers and coarse aggregates has become a popular way to enhance the strength and stability of the cemented tailings backfilling(CTB)body.It is essential to explore the influence of tailings-aggregate ratio and fiber content on the mechanical properties of CTB samples.The comprehensive tests of the unconfined compressive strength(UCS),slump and microstructure were designed,and the regression models were established to characterize the effect of the strength,ductility and fluidity.The results indicate that the tailings-aggregate ratio of 5:5 and PP fiber content of 0.5 kg/m^(3) are the optimum point considering the UCS,cracking strain,peak strain and post-peak ductility.The tailings-aggregate ratio is consistent with the unary quadratic to the UCS and a linear model with a negative slope to the slump.Microstructural analysis indicates that PP fiber tends to bridge the cracks and rod-mill sand to serve as the skeleton of the paste matrix,which can enhance the compactness and improve the ductility of the CTB.The results presented here are of great significance to the understanding and application of coarse aggregates and fibers to improve the mechanical properties of CTB.
基金Project(51038004) supported by the National Natural Science Foundation of ChinaProject(2009318000078) supported by the Western China Communications Construction and Technology Program, China
文摘In order to establish a new method for measuring the dimensions of coarse aggregates, five different-size flat and elongated (F&E) coarse aggregates were glued into two specimens by epoxy resin, respectively, and slice images were obtained by X-ray CT, then the aggregates were extracted by the fuzzy c-means clustering algorithm. Attributions of the particle on different cross-sections were determined by the ‘overlap area method’. And unified three-dimensional Cartesian coordinate system was established based on continuous slice images. The coefficient values of spherical harmonics descriptor representing particles surface profile were gained, then each scanned particle was represented by 60×120 discrete points conformably with spherical harmonics descriptor. The chord length and direction angles were determined by the calculation. With the major axis (L) and orthogonal axis (W and T), the calculated results were compared with those measured by caliper. It is concluded that the new L, W, and T dimension measuring method is able to take the place of the present manual measurement.