The chemical compound 3-(N-ethylamino)isobutyl)trimethoxysilane(EAMS)modified titanium dioxide(TiO_(2)),producing EAMS-TiO_(2),which was encased in graphitic carbon nitride(GCN)and integrated into epoxy resin(EP).The ...The chemical compound 3-(N-ethylamino)isobutyl)trimethoxysilane(EAMS)modified titanium dioxide(TiO_(2)),producing EAMS-TiO_(2),which was encased in graphitic carbon nitride(GCN)and integrated into epoxy resin(EP).The protective properties of mild steel coated with this nanocomposite in a marine environment were assessedusing electrochemical techniques.Thermogravimetric analysis(TGA)and Cone calorimetry tests demonstrated thatGCN/EAMS-TiO_(2)significantly enhanced the flame retardancy of the epoxy coating,reducing peak heat release rate(PHRR)and total heat release(THR)values by 88%and 70%,respectively,compared to pure EP.Salt spray testsindicated reduced water absorption and improved corrosion resistance.The optimal concentration of 0.6 wt%GCNEAMS/TiO_(2)yielded the highest resistance,with the nanocomposite achieving a coating resistance of 7.50×10^(10)Ω·cm^(2)after 28 d in seawater.The surface resistance of EP-GCN/EAMS-TiO_(2)was over 99.9 times higher than pure EP after onehour in seawater.SECM analysis showed the lowest ferrous ion dissipation(1.0 nA)for EP-GCN/EAMS-TiO_(2)coatedsteel.FE-SEM and EDX analyses revealed improved breakdown products and a durable inert nanolayered covering.Thenanocomposite exhibited excellent water resistance(water contact angle of 167°)and strong mechanical properties,withadhesive strength increasing to 18.3 MPa after 28 d in seawater.EP-GCN/EAMS-TiO_(2)shows potential as a coatingmaterial for the shipping industry.展开更多
二氧化碳(CO_(2))的大量排放是导致全球变暖的主要原因之一,其中CO_(2)捕集、利用与封存(CO_(2) capture,utilization and storage,CCUS)技术是减少碳排放的关键手段,然而传统CCUS技术中捕集成本较高,限制了CCUS技术的推广应用。本文采...二氧化碳(CO_(2))的大量排放是导致全球变暖的主要原因之一,其中CO_(2)捕集、利用与封存(CO_(2) capture,utilization and storage,CCUS)技术是减少碳排放的关键手段,然而传统CCUS技术中捕集成本较高,限制了CCUS技术的推广应用。本文采用CO_(2)捕集-转化一体化(integrated carbon capture and conversion,ICCC)技术方案,通过将碳捕集过程与碳转化过程相耦合,避免CO_(2)捕集材料再生所需的大量能耗,从而降低CCUS捕集过程成本。实验以Fe、Co基非贵金属作为催化组分,Ca为吸附组分,采用并流共沉淀的方法制备了FexCoyCa_(3)Al系列双功能材料,应用于ICCC制备合成气过程,探究了Fe/Co对双功能材料性能的影响,通过透射电子显微镜、X射线光电子能谱、H2-程序升温还原、CO_(2)-程序升温脱附等对双功能材料进行表征,相关结果表明双功能材料Fe、Co、Ca、Al等元素分布均匀,未出现团聚现象,Fe-Co元素之间存在相互作用,提升了双功能材料的一体化性能。在优化条件下,Fe_(0.5)Co_(0.5)Ca_(3)Al材料CO_(2)捕集容量为11.05mmol/g,CO产率达到11.94mmol/(g∙h)。展开更多
近年来,碳捕集、利用与封存(carbon capture utilization and storage,CCUS)技术在减少CO_(2)排放方面取得了显著进展,但其高能耗和复杂的工艺流程限制了大规模推广应用。为提升能源利用效率,集成二氧化碳捕集与利用(integrated CO_(2)c...近年来,碳捕集、利用与封存(carbon capture utilization and storage,CCUS)技术在减少CO_(2)排放方面取得了显著进展,但其高能耗和复杂的工艺流程限制了大规模推广应用。为提升能源利用效率,集成二氧化碳捕集与利用(integrated CO_(2)capture and utilization,ICCU)技术逐渐成为研究的重点方向,该技术通过双功能材料(dual-functional materials,DFM)实现CO_(2)的捕集与原位转化,直接将捕集的CO_(2)高效转化为具有经济价值的化学品。与传统CCU技术相比,ICCU技术大幅简化了CO_(2)解吸、压缩和运输等步骤,具有广阔的应用潜力。围绕ICCU-甲烷化(ICCU-Methanation,ICCU-Met)技术,首先系统介绍了ICCU-Met过程并从热力学角度分析了该技术实现CO_(2)捕集与转化的可行性;随后重点探讨了应用于该过程的双功能材料,分析了其在CO_(2)捕集能力、催化活性、稳定性等方面的表现;并针对ICCU-Met技术面临的过程放大挑战,分析了实际工业烟气条件、反应器设计及技术经济性等方面的问题;最后总结了该技术的发展瓶颈,并提出了未来可能的研究方向。展开更多
文摘The chemical compound 3-(N-ethylamino)isobutyl)trimethoxysilane(EAMS)modified titanium dioxide(TiO_(2)),producing EAMS-TiO_(2),which was encased in graphitic carbon nitride(GCN)and integrated into epoxy resin(EP).The protective properties of mild steel coated with this nanocomposite in a marine environment were assessedusing electrochemical techniques.Thermogravimetric analysis(TGA)and Cone calorimetry tests demonstrated thatGCN/EAMS-TiO_(2)significantly enhanced the flame retardancy of the epoxy coating,reducing peak heat release rate(PHRR)and total heat release(THR)values by 88%and 70%,respectively,compared to pure EP.Salt spray testsindicated reduced water absorption and improved corrosion resistance.The optimal concentration of 0.6 wt%GCNEAMS/TiO_(2)yielded the highest resistance,with the nanocomposite achieving a coating resistance of 7.50×10^(10)Ω·cm^(2)after 28 d in seawater.The surface resistance of EP-GCN/EAMS-TiO_(2)was over 99.9 times higher than pure EP after onehour in seawater.SECM analysis showed the lowest ferrous ion dissipation(1.0 nA)for EP-GCN/EAMS-TiO_(2)coatedsteel.FE-SEM and EDX analyses revealed improved breakdown products and a durable inert nanolayered covering.Thenanocomposite exhibited excellent water resistance(water contact angle of 167°)and strong mechanical properties,withadhesive strength increasing to 18.3 MPa after 28 d in seawater.EP-GCN/EAMS-TiO_(2)shows potential as a coatingmaterial for the shipping industry.
文摘二氧化碳(CO_(2))的大量排放是导致全球变暖的主要原因之一,其中CO_(2)捕集、利用与封存(CO_(2) capture,utilization and storage,CCUS)技术是减少碳排放的关键手段,然而传统CCUS技术中捕集成本较高,限制了CCUS技术的推广应用。本文采用CO_(2)捕集-转化一体化(integrated carbon capture and conversion,ICCC)技术方案,通过将碳捕集过程与碳转化过程相耦合,避免CO_(2)捕集材料再生所需的大量能耗,从而降低CCUS捕集过程成本。实验以Fe、Co基非贵金属作为催化组分,Ca为吸附组分,采用并流共沉淀的方法制备了FexCoyCa_(3)Al系列双功能材料,应用于ICCC制备合成气过程,探究了Fe/Co对双功能材料性能的影响,通过透射电子显微镜、X射线光电子能谱、H2-程序升温还原、CO_(2)-程序升温脱附等对双功能材料进行表征,相关结果表明双功能材料Fe、Co、Ca、Al等元素分布均匀,未出现团聚现象,Fe-Co元素之间存在相互作用,提升了双功能材料的一体化性能。在优化条件下,Fe_(0.5)Co_(0.5)Ca_(3)Al材料CO_(2)捕集容量为11.05mmol/g,CO产率达到11.94mmol/(g∙h)。
文摘近年来,碳捕集、利用与封存(carbon capture utilization and storage,CCUS)技术在减少CO_(2)排放方面取得了显著进展,但其高能耗和复杂的工艺流程限制了大规模推广应用。为提升能源利用效率,集成二氧化碳捕集与利用(integrated CO_(2)capture and utilization,ICCU)技术逐渐成为研究的重点方向,该技术通过双功能材料(dual-functional materials,DFM)实现CO_(2)的捕集与原位转化,直接将捕集的CO_(2)高效转化为具有经济价值的化学品。与传统CCU技术相比,ICCU技术大幅简化了CO_(2)解吸、压缩和运输等步骤,具有广阔的应用潜力。围绕ICCU-甲烷化(ICCU-Methanation,ICCU-Met)技术,首先系统介绍了ICCU-Met过程并从热力学角度分析了该技术实现CO_(2)捕集与转化的可行性;随后重点探讨了应用于该过程的双功能材料,分析了其在CO_(2)捕集能力、催化活性、稳定性等方面的表现;并针对ICCU-Met技术面临的过程放大挑战,分析了实际工业烟气条件、反应器设计及技术经济性等方面的问题;最后总结了该技术的发展瓶颈,并提出了未来可能的研究方向。