Coal seam water injection in tunnels is an effective technical measure for preventing coal mine rock bursts.This study used the improved split Hopkinson pressure bar(SHPB)to apply three equal static stresses to water-...Coal seam water injection in tunnels is an effective technical measure for preventing coal mine rock bursts.This study used the improved split Hopkinson pressure bar(SHPB)to apply three equal static stresses to water-saturated coal to simulate the initial stress environment of coal at different depths.Then,dynamic mechanical experiments were conducted on the saturated coal at different depths to investigate the effects of water saturation and depth on the coal samples’dynamic mechanical properties.Under uniaxial compression and without lateral compression,the strength of coal samples decreased to varying degrees in the saturated state;under different depth conditions,the dynamic strength of coal in the saturated state decreased compared with that in the natural state.However,compared with that at 0 m,the reduction in the strength of coal under the saturated condition at 200,400,600,and 800 m was significantly reduced.The findings of this study provide a basic theoretical foundation for the prevention and control of dynamic coal mine disasters.展开更多
The stability of room mining coal pillars during their secondary mining for recovering coal was analyzed. An analysis was performed for the damage and instability mechanism of coal pillars recovered by the caving mini...The stability of room mining coal pillars during their secondary mining for recovering coal was analyzed. An analysis was performed for the damage and instability mechanism of coal pillars recovered by the caving mining method. During the damage progression of a single room coal pillar, the shape of the stress distribution in the pillar transformed from the initial stable saddle shape to the final arch-shaped distribution of critical instability. By combining the shapes of stress distribution in the coal pillars with the ultimate strength theory, the safe-stress value of coal pillar was obtained as 11.8 MPa. The mechanism of instability of coal pillar groups recovered by the caving mining method was explained by the domino effect. Since the room coal pillars mined and recovered by the traditional caving mining method were significantly influenced by the secondary mining during recovery, the coal pillars would go through a chain-type instability failure. Because of this limitation, the method of solid backfilling was proposed for mining and recovering room coal pillars, thus changing the transfer mechanism of stress caused by the secondary mining(recovery) of coal pillars. The mechanical model of the stope in the case of backfilling and recovering room coal pillars was built. The peak stress values inside coal pillars varied with the variance of backfilling ratio when the working face was advanced by 150 m. Furthermore, when the critical backfilling ratio was 80.6%, the instability failure of coal pillars would not occur during the solid backfill mining process. By taking Bandingliang Coal Mine as an example, the coal pillars' stability of stope under this backfilling ratio was studied, and a project scheme was designed.展开更多
Total concentrations of arsenic, lead, cadmium, mercury, nickel, chromium, and copper in the soils from near a coal mine area in southwest Guizhou, China, were measured to evaluate the level of contamination, and the ...Total concentrations of arsenic, lead, cadmium, mercury, nickel, chromium, and copper in the soils from near a coal mine area in southwest Guizhou, China, were measured to evaluate the level of contamination, and the potential ecological risks posed by the heavy metals were quantitatively estimated. Results reveal that all heavy metals/metalloid exceeded the background values for soil environmental quality of heavy metals in Guizhou area. Geo-accumulation index(I_(geo)) showed that arsenic had the highest contamination level(I_(geo)=4) among the seven heavy metals/metalloid, and the contamination levels of mercury and lead were also relatively high(I_(geo)=3). Pearson correlation and cluster analysis identified that mercury, copper and arsenic had a relationship, and their presence might be mainly related to mining activity, coal and oil combustion, and vehicle emissions. Improved Nemerow index indicated that the overall level of heavy metal contamination in the studied area ranged from moderately–heavily contaminated to heavily contaminated level. Potential ecological risk index(R_I) analysis manifested that the whole ecological risk level ranged from high degree to very high degree(325.30≤R_I≤801.02) in the studied soil samples, and the potential ecological risk factors (E_r^i) of heavy metals/metalloid were as follows: Hg > As > Cd > Pb > Cu > Ni > Cr, and the E_r^i of Hg and As reached very high risk grade.展开更多
In order to accurately and quickly identify the safety status pattern of coalmines,a new safety status pattern recognition method based on the extension neural network (ENN) was proposed,and the design of structure of...In order to accurately and quickly identify the safety status pattern of coalmines,a new safety status pattern recognition method based on the extension neural network (ENN) was proposed,and the design of structure of network,the rationale of recognition algorithm and the performance of proposed method were discussed in detail.The safety status pattern recognition problem of coalmines can be regard as a classification problem whose features are defined in a range,so using the ENN is most appropriate for this problem.The ENN-based recognition method can use a novel extension distance to measure the similarity between the object to be recognized and the class centers.To demonstrate the effectiveness of the proposed method,a real-world application on the geological safety status pattern recognition of coalmines was tested.Comparative experiments with existing method and other traditional ANN-based methods were conducted.The experimental results show that the proposed ENN-based recognition method can identify the safety status pattern of coalmines accurately with shorter learning time and simpler structure.The experimental results also confirm that the proposed method has a better performance in recognition accuracy,generalization ability and fault-tolerant ability,which are very useful in recognizing the safety status pattern in the process of coal production.展开更多
A new explosion-proof walking system was designed for the coal mine rescue robot(CMRR) by optimizing the mechanical structure and control algorithm. The mechanical structure innovation lies mainly in the dual-motor dr...A new explosion-proof walking system was designed for the coal mine rescue robot(CMRR) by optimizing the mechanical structure and control algorithm. The mechanical structure innovation lies mainly in the dual-motor drive tracked unit used, which showed high dynamic performance compared with the conventional tracked unit. The control algorithm, developed based on decision trees and neural networking, facilitates autonomous switching between "Velocity-driven Mode" and "Torquedriven Mode". To verify the feasibility and effectiveness of the control strategy, we built a self-designed test platform and used it to debug the control program; we then made a robot prototype and conducted further experiments on single-step, ramp, and rubble terrains. The results show that the proposed walking system has excellent dynamic performance and the control strategy is very efficient, suggesting that a robot with this type of explosion-proof walking system can be successfully applied in Chinese coal mines.展开更多
To realize a stable addition of foaming agent used for foam technology, a new adding method using the jet cavitation was introduced, and its performance was investigated experimentally under different operating condit...To realize a stable addition of foaming agent used for foam technology, a new adding method using the jet cavitation was introduced, and its performance was investigated experimentally under different operating conditions. Experimental results show that the bubble region in the jet device has a constant vapor pressure, which creates a good condition for liquid absorption, while it shrinks with increasing outlet pressure. The liquid absorption amount keeps unchanged when the outlet pressure is lower than a critical value. The critical outlet pressure increases by 40% with decreasing cavitation absorption amount, which is especially suitable for mini-flow quantitative addition of foaming agent used for foam dust suppression. Its effectiveness on suppressing mine dust was evaluated in a heading face of underground coal mines. Field application indicates that the reliable and simple foaming system adopting the new adding method makes a marked dust suppression effect. The working environment of heading face is significantly improved, ensuring the safe tunneling and personal security.展开更多
在智慧矿山建设的背景下,智能化设备的应用日益成为矿山智慧化改造的主要内容,用于巡检、危险区域勘测等任务的煤矿井下智能机器人运行依赖于数字地图构建和机器人自身定位,但大多数传统的定位方法在煤矿井下出现了低效甚至失效的情况,...在智慧矿山建设的背景下,智能化设备的应用日益成为矿山智慧化改造的主要内容,用于巡检、危险区域勘测等任务的煤矿井下智能机器人运行依赖于数字地图构建和机器人自身定位,但大多数传统的定位方法在煤矿井下出现了低效甚至失效的情况,同步定位与建图技术(Simultaneous Localization and Mapping,SLAM)成为了煤矿井下智能机器人定位方法的较优选择。然而,受制于激光雷达的高成本,以及相机在井下的低光照环境性能不佳,需要设计一种兼顾低成本和具有井下低光照环境适应性的SLAM定位方法,故提出了一种具有井下暗光照适应性煤矿井下机器人定位方法。首先,采集了陕西省宝鸡市凤县某煤矿井下的实景图像和SLAM所需的相机与IMU数据,根据图像制作了非匹配的暗光与正常光数据集,经过数据扩增达到3560张图像。设计了结合自注意力模块的EnlightenGAN图像增强网络,在不依赖配对数据集的情况下兼顾图像不同区域的依赖关系应对图像光照不均区域。在ORB-SLAM3框架的基础上,引入全局部图像检测对输入图像进行筛分,引入基于解析解的IMU初始化改进策略提高初始化速度,并引入了改进的图像增强网络对低光照以及光照不均的图像进行增强处理。在EuRoC数据集上的试验表明,基于图像增强的煤矿井下智能机器人定位方法能够在低光照环境下降低13.7%的ERMS和15.24%的ESD。在2个实际煤矿巷道场景中,系统能够识别低光照环境、增加SLAM系统提取的特征点数量,减少定位轨迹的漂移现象,最终改善系统在巷道低光照区域的定位效果。展开更多
基金Projects(52225403,52074112)supported by the National Natural Science Foundation of ChinaProject(2022CFD009)supported by the Hubei Natural Science Foundation Innovation and Development Joint Fund Key Project,China+2 种基金Project(SDGZK2423)supported by the State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering,ChinaProject(HJZKYBKT2024111)supported by the Xiangyang Federation of Social Sciences“Hanjiang Think Tank”Project,ChinaProject supported by the Hubei Superior and Distinctive Discipline Group of“New Energy Vehicle and Smart Transportation”,China。
文摘Coal seam water injection in tunnels is an effective technical measure for preventing coal mine rock bursts.This study used the improved split Hopkinson pressure bar(SHPB)to apply three equal static stresses to water-saturated coal to simulate the initial stress environment of coal at different depths.Then,dynamic mechanical experiments were conducted on the saturated coal at different depths to investigate the effects of water saturation and depth on the coal samples’dynamic mechanical properties.Under uniaxial compression and without lateral compression,the strength of coal samples decreased to varying degrees in the saturated state;under different depth conditions,the dynamic strength of coal in the saturated state decreased compared with that in the natural state.However,compared with that at 0 m,the reduction in the strength of coal under the saturated condition at 200,400,600,and 800 m was significantly reduced.The findings of this study provide a basic theoretical foundation for the prevention and control of dynamic coal mine disasters.
基金Project(2014ZDPY02)supported by the Fundamental Research Funds for the Central Universities
文摘The stability of room mining coal pillars during their secondary mining for recovering coal was analyzed. An analysis was performed for the damage and instability mechanism of coal pillars recovered by the caving mining method. During the damage progression of a single room coal pillar, the shape of the stress distribution in the pillar transformed from the initial stable saddle shape to the final arch-shaped distribution of critical instability. By combining the shapes of stress distribution in the coal pillars with the ultimate strength theory, the safe-stress value of coal pillar was obtained as 11.8 MPa. The mechanism of instability of coal pillar groups recovered by the caving mining method was explained by the domino effect. Since the room coal pillars mined and recovered by the traditional caving mining method were significantly influenced by the secondary mining during recovery, the coal pillars would go through a chain-type instability failure. Because of this limitation, the method of solid backfilling was proposed for mining and recovering room coal pillars, thus changing the transfer mechanism of stress caused by the secondary mining(recovery) of coal pillars. The mechanical model of the stope in the case of backfilling and recovering room coal pillars was built. The peak stress values inside coal pillars varied with the variance of backfilling ratio when the working face was advanced by 150 m. Furthermore, when the critical backfilling ratio was 80.6%, the instability failure of coal pillars would not occur during the solid backfill mining process. By taking Bandingliang Coal Mine as an example, the coal pillars' stability of stope under this backfilling ratio was studied, and a project scheme was designed.
基金Project(21467005)supported by the National Natural Science Foundation of China
文摘Total concentrations of arsenic, lead, cadmium, mercury, nickel, chromium, and copper in the soils from near a coal mine area in southwest Guizhou, China, were measured to evaluate the level of contamination, and the potential ecological risks posed by the heavy metals were quantitatively estimated. Results reveal that all heavy metals/metalloid exceeded the background values for soil environmental quality of heavy metals in Guizhou area. Geo-accumulation index(I_(geo)) showed that arsenic had the highest contamination level(I_(geo)=4) among the seven heavy metals/metalloid, and the contamination levels of mercury and lead were also relatively high(I_(geo)=3). Pearson correlation and cluster analysis identified that mercury, copper and arsenic had a relationship, and their presence might be mainly related to mining activity, coal and oil combustion, and vehicle emissions. Improved Nemerow index indicated that the overall level of heavy metal contamination in the studied area ranged from moderately–heavily contaminated to heavily contaminated level. Potential ecological risk index(R_I) analysis manifested that the whole ecological risk level ranged from high degree to very high degree(325.30≤R_I≤801.02) in the studied soil samples, and the potential ecological risk factors (E_r^i) of heavy metals/metalloid were as follows: Hg > As > Cd > Pb > Cu > Ni > Cr, and the E_r^i of Hg and As reached very high risk grade.
基金Project(107021) supported by the Key Foundation of Chinese Ministry of Education Project(2009643013) supported by China Scholarship Fund
文摘In order to accurately and quickly identify the safety status pattern of coalmines,a new safety status pattern recognition method based on the extension neural network (ENN) was proposed,and the design of structure of network,the rationale of recognition algorithm and the performance of proposed method were discussed in detail.The safety status pattern recognition problem of coalmines can be regard as a classification problem whose features are defined in a range,so using the ENN is most appropriate for this problem.The ENN-based recognition method can use a novel extension distance to measure the similarity between the object to be recognized and the class centers.To demonstrate the effectiveness of the proposed method,a real-world application on the geological safety status pattern recognition of coalmines was tested.Comparative experiments with existing method and other traditional ANN-based methods were conducted.The experimental results show that the proposed ENN-based recognition method can identify the safety status pattern of coalmines accurately with shorter learning time and simpler structure.The experimental results also confirm that the proposed method has a better performance in recognition accuracy,generalization ability and fault-tolerant ability,which are very useful in recognizing the safety status pattern in the process of coal production.
基金Project(2012AA041504)supported by the National High-Tech Research and Development Program of ChinaProject(KYLX15_1418)supported by the 2015 Annual General University Graduate Research and Innovation Program of Jiangsu Province,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘A new explosion-proof walking system was designed for the coal mine rescue robot(CMRR) by optimizing the mechanical structure and control algorithm. The mechanical structure innovation lies mainly in the dual-motor drive tracked unit used, which showed high dynamic performance compared with the conventional tracked unit. The control algorithm, developed based on decision trees and neural networking, facilitates autonomous switching between "Velocity-driven Mode" and "Torquedriven Mode". To verify the feasibility and effectiveness of the control strategy, we built a self-designed test platform and used it to debug the control program; we then made a robot prototype and conducted further experiments on single-step, ramp, and rubble terrains. The results show that the proposed walking system has excellent dynamic performance and the control strategy is very efficient, suggesting that a robot with this type of explosion-proof walking system can be successfully applied in Chinese coal mines.
基金Project(51474216)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions,ChinaProject(2012DXS02)supported by the Fundamental Research Funds for the Central Universities,China
文摘To realize a stable addition of foaming agent used for foam technology, a new adding method using the jet cavitation was introduced, and its performance was investigated experimentally under different operating conditions. Experimental results show that the bubble region in the jet device has a constant vapor pressure, which creates a good condition for liquid absorption, while it shrinks with increasing outlet pressure. The liquid absorption amount keeps unchanged when the outlet pressure is lower than a critical value. The critical outlet pressure increases by 40% with decreasing cavitation absorption amount, which is especially suitable for mini-flow quantitative addition of foaming agent used for foam dust suppression. Its effectiveness on suppressing mine dust was evaluated in a heading face of underground coal mines. Field application indicates that the reliable and simple foaming system adopting the new adding method makes a marked dust suppression effect. The working environment of heading face is significantly improved, ensuring the safe tunneling and personal security.
文摘在智慧矿山建设的背景下,智能化设备的应用日益成为矿山智慧化改造的主要内容,用于巡检、危险区域勘测等任务的煤矿井下智能机器人运行依赖于数字地图构建和机器人自身定位,但大多数传统的定位方法在煤矿井下出现了低效甚至失效的情况,同步定位与建图技术(Simultaneous Localization and Mapping,SLAM)成为了煤矿井下智能机器人定位方法的较优选择。然而,受制于激光雷达的高成本,以及相机在井下的低光照环境性能不佳,需要设计一种兼顾低成本和具有井下低光照环境适应性的SLAM定位方法,故提出了一种具有井下暗光照适应性煤矿井下机器人定位方法。首先,采集了陕西省宝鸡市凤县某煤矿井下的实景图像和SLAM所需的相机与IMU数据,根据图像制作了非匹配的暗光与正常光数据集,经过数据扩增达到3560张图像。设计了结合自注意力模块的EnlightenGAN图像增强网络,在不依赖配对数据集的情况下兼顾图像不同区域的依赖关系应对图像光照不均区域。在ORB-SLAM3框架的基础上,引入全局部图像检测对输入图像进行筛分,引入基于解析解的IMU初始化改进策略提高初始化速度,并引入了改进的图像增强网络对低光照以及光照不均的图像进行增强处理。在EuRoC数据集上的试验表明,基于图像增强的煤矿井下智能机器人定位方法能够在低光照环境下降低13.7%的ERMS和15.24%的ESD。在2个实际煤矿巷道场景中,系统能够识别低光照环境、增加SLAM系统提取的特征点数量,减少定位轨迹的漂移现象,最终改善系统在巷道低光照区域的定位效果。