Elemental doping is an effective strategy for tuning the band structure of graphite carbon nitride(CN)to enhance its photocatalytic performance.In this study,sodium(Na)and oxygen(O)co-doped carbon nitride(Na/O-CN_(x),...Elemental doping is an effective strategy for tuning the band structure of graphite carbon nitride(CN)to enhance its photocatalytic performance.In this study,sodium(Na)and oxygen(O)co-doped carbon nitride(Na/O-CN_(x),x=1.0,2.0,3.0,4.0)was synthesized via solid-phase reaction of sodium citrate(NaCA)and pure CN powder in the Teflon-sealed autoclave under air conditions at 180℃.Surface area of Na/O-CN_(3.0) is measured to be 18.8 m^(2)/g,increasing by 60.7%compared to that of pure CN(11.7 m^(2)/g).Bandgap energy of Na/O-CN_(3.0) is determined to be 2.68 eV,marginally lower than that of pure CN(2.70 eV),thereby enhancing its capacity for sunlight absorption.Meanwhile,the incorporation of Na and O atoms into Na/O-CN_(x) is found to effectively reduce recombination rates of photogenerated electron-hole pairs.As a result,Na/O-CN_(x) samples exhibit markedly enhanced photocatalytic hydrogen evolution activity under visible light irradiation.Notably,the optimal Na/O-CN_(3.0) sample achieves a photocatalytic hydrogen production rate of 103.2μmol·g^(–1)·h^(–1),which is 8.2 times greater than that of pure CN(11.2μmol·g^(–1)·h^(–1)).Furthermore,a series of Na/O-CN_(x)-yO_(2)(y=0,20%,40%,60%,80%,100%)samples were prepared by modulating the oxygen content within reaction atmosphere.The catalytic performance evaluations reveal that the incorporation of both Na and O atoms in Na/O-CN_(3.0) enhances photocatalytic activity.This study also introduces novel methodologies for synthesis of metal atom-doped CN materials at lower temperature,highlighting the synergistic effect of Na and O atoms in photocatalytic hydrogen production of Na/O-CN_(x) samples.展开更多
For rechargeable aqueous zinc-ion batteries(ZIBs),the design of nanocomposites comprised of electrochemically active materials and carbon materials with novel structures has great prom-ise in addressing the issue of e...For rechargeable aqueous zinc-ion batteries(ZIBs),the design of nanocomposites comprised of electrochemically active materials and carbon materials with novel structures has great prom-ise in addressing the issue of electrical conductivity and structural stability in the electrode materials during electrochemical cycling.We report the production of a novel flexible electrode material,by anchoring MnO_(2) nanosheets on a B,N co-doped carbon nanotube ar-ray(BNCNTs)grown on carbon cloth(BNCNTs@MnO_(2)),which was fabricated by in-situ pyrolysis and hydrothermal growth.The generated BNCNTs were strongly bonded to the surface of the car-bon fibers in the carbon cloth which provides both excellent elec-tron transport and ion diffusion,and improves the stability and dur-ability of the cathode.Importantly,the BNCNTs offer more active sites for the hydrothermal growth of MnO_(2),ensuring a uniform dis-tribution.Electrochemical tests show that BNCNTs@MnO_(2) delivers a high specific capacity of 310.7 mAh g^(−1) at 0.1 A g^(−1),along with excellent rate capability and outstanding cycling stability,with a 79.7% capacity retention after 8000 cycles at 3 A g^(−1).展开更多
精确的环境感知是实现自主代客泊车(automated valet parking,AVP)功能的基础,传统的AVP系统主要依赖于单车的感知,但随着场端智能技术的不断发展,车端与场端之间协同交互成为自主代客泊车落地的必然趋势。本文提出了一种基于V2X车场协...精确的环境感知是实现自主代客泊车(automated valet parking,AVP)功能的基础,传统的AVP系统主要依赖于单车的感知,但随着场端智能技术的不断发展,车端与场端之间协同交互成为自主代客泊车落地的必然趋势。本文提出了一种基于V2X车场协同的地下停车场全域感知方法,该方法将地下停车场的全域感知问题转化为大规模图模型的构建与优化问题。通过输入场端激光雷达、摄像头的传感器信息以及智能网联车的感知数据,以车辆位姿为节点,建立多种边约束关系。为了提高感知精度,本文提出了一种融合车道级地图信息的大规模图模型方法,通过将停放车辆作为半静态信息约束,并结合车道级地图信息构建横向约束,在求解过程中引入滑动窗口以减小图模型的规模,最终以地图形式输出感知结果供车端使用。通过仿真实验和在占地面积为2 500 m^(2)以上的地下停车场场景中进行实地实验,结果表明,该方法显著提升了在复杂停车场环境下的感知能力,实现了地下停车场的全域感知。展开更多
基金National Natural Science Foundation of China(21806023)Natural Science Foundation of Hunan Province(2021JJ40199)+2 种基金Education Department Foundation of Hunan Province(20C0813)Hunan University of Science and Technology Fundamental Research FundsPostgraduate Scientific Research Innovation Project of Hunan Province(CX20240877)。
文摘Elemental doping is an effective strategy for tuning the band structure of graphite carbon nitride(CN)to enhance its photocatalytic performance.In this study,sodium(Na)and oxygen(O)co-doped carbon nitride(Na/O-CN_(x),x=1.0,2.0,3.0,4.0)was synthesized via solid-phase reaction of sodium citrate(NaCA)and pure CN powder in the Teflon-sealed autoclave under air conditions at 180℃.Surface area of Na/O-CN_(3.0) is measured to be 18.8 m^(2)/g,increasing by 60.7%compared to that of pure CN(11.7 m^(2)/g).Bandgap energy of Na/O-CN_(3.0) is determined to be 2.68 eV,marginally lower than that of pure CN(2.70 eV),thereby enhancing its capacity for sunlight absorption.Meanwhile,the incorporation of Na and O atoms into Na/O-CN_(x) is found to effectively reduce recombination rates of photogenerated electron-hole pairs.As a result,Na/O-CN_(x) samples exhibit markedly enhanced photocatalytic hydrogen evolution activity under visible light irradiation.Notably,the optimal Na/O-CN_(3.0) sample achieves a photocatalytic hydrogen production rate of 103.2μmol·g^(–1)·h^(–1),which is 8.2 times greater than that of pure CN(11.2μmol·g^(–1)·h^(–1)).Furthermore,a series of Na/O-CN_(x)-yO_(2)(y=0,20%,40%,60%,80%,100%)samples were prepared by modulating the oxygen content within reaction atmosphere.The catalytic performance evaluations reveal that the incorporation of both Na and O atoms in Na/O-CN_(3.0) enhances photocatalytic activity.This study also introduces novel methodologies for synthesis of metal atom-doped CN materials at lower temperature,highlighting the synergistic effect of Na and O atoms in photocatalytic hydrogen production of Na/O-CN_(x) samples.
基金financial support from projects funded by the National Natural Science Foundation of China(52172038,22179017)the National Key Research and Development Program of China(2022YFB4101600,2022YFB4101601)。
文摘For rechargeable aqueous zinc-ion batteries(ZIBs),the design of nanocomposites comprised of electrochemically active materials and carbon materials with novel structures has great prom-ise in addressing the issue of electrical conductivity and structural stability in the electrode materials during electrochemical cycling.We report the production of a novel flexible electrode material,by anchoring MnO_(2) nanosheets on a B,N co-doped carbon nanotube ar-ray(BNCNTs)grown on carbon cloth(BNCNTs@MnO_(2)),which was fabricated by in-situ pyrolysis and hydrothermal growth.The generated BNCNTs were strongly bonded to the surface of the car-bon fibers in the carbon cloth which provides both excellent elec-tron transport and ion diffusion,and improves the stability and dur-ability of the cathode.Importantly,the BNCNTs offer more active sites for the hydrothermal growth of MnO_(2),ensuring a uniform dis-tribution.Electrochemical tests show that BNCNTs@MnO_(2) delivers a high specific capacity of 310.7 mAh g^(−1) at 0.1 A g^(−1),along with excellent rate capability and outstanding cycling stability,with a 79.7% capacity retention after 8000 cycles at 3 A g^(−1).
文摘精确的环境感知是实现自主代客泊车(automated valet parking,AVP)功能的基础,传统的AVP系统主要依赖于单车的感知,但随着场端智能技术的不断发展,车端与场端之间协同交互成为自主代客泊车落地的必然趋势。本文提出了一种基于V2X车场协同的地下停车场全域感知方法,该方法将地下停车场的全域感知问题转化为大规模图模型的构建与优化问题。通过输入场端激光雷达、摄像头的传感器信息以及智能网联车的感知数据,以车辆位姿为节点,建立多种边约束关系。为了提高感知精度,本文提出了一种融合车道级地图信息的大规模图模型方法,通过将停放车辆作为半静态信息约束,并结合车道级地图信息构建横向约束,在求解过程中引入滑动窗口以减小图模型的规模,最终以地图形式输出感知结果供车端使用。通过仿真实验和在占地面积为2 500 m^(2)以上的地下停车场场景中进行实地实验,结果表明,该方法显著提升了在复杂停车场环境下的感知能力,实现了地下停车场的全域感知。