期刊文献+
共找到196,260篇文章
< 1 2 250 >
每页显示 20 50 100
基于clustering算法的事务抽样关联规则挖掘算法 被引量:3
1
作者 马玉玲 《计算机应用》 CSCD 北大核心 2015年第A02期77-79,84,共4页
关联规则挖掘典型算法Apriori由于在频繁项集的生成时,需要多次扫描数据库,空间和时间耗费较大。之后虽然有很多Apriori算法的改进版本,但大多是从数据存储结构的角度,少有研究考虑到数据集本身的性质。对此提出了基于clustering算法的... 关联规则挖掘典型算法Apriori由于在频繁项集的生成时,需要多次扫描数据库,空间和时间耗费较大。之后虽然有很多Apriori算法的改进版本,但大多是从数据存储结构的角度,少有研究考虑到数据集本身的性质。对此提出了基于clustering算法的事务抽样关联规则挖掘算法,通过聚类技术对事务进行聚类,得出能够反映原始交易数据特征的事务子集,然后,在该子集上开展挖掘分析工作。该方法在8个不同规模人造数据集和1个真实数据集上进行了实验。其中,在较小规模人造数据集上,时间比原方法节省0.03 s;规模越大,节省时间越多,在大小为15 000、维度为30的数据集上运行时,比原方法节省了70 s;在真实数据集上,不同参数设置下该方法耗时仅为原方法的50%。实验证明,该方法与传统Apriori算法相比,效率较高,尤其在数据量大时,效果提升更明显。该算法的思想也可以扩展应用到其他改进的Apriori算法中。 展开更多
关键词 聚类算法 事务子集 关联规则挖掘 APRIORI算法
在线阅读 下载PDF
High dynamic mobile topology-based clustering algorithm for UAV swarm networks
2
作者 CHEN Siji JIANG Bo +2 位作者 XU Hong PANG Tao GAO Mingke 《Journal of Systems Engineering and Electronics》 2025年第4期1103-1112,共10页
Unmanned aerial vehicles(UAVs)have become one of the key technologies to achieve future data collection due to their high mobility,rapid deployment,low cost,and the ability to establish line-of-sight communication lin... Unmanned aerial vehicles(UAVs)have become one of the key technologies to achieve future data collection due to their high mobility,rapid deployment,low cost,and the ability to establish line-of-sight communication links.However,when UAV swarm perform tasks in narrow spaces,they often encounter various spatial obstacles,building shielding materials,and high-speed node movements,which result in intermittent network communication links and cannot support the smooth comple-tion of tasks.In this paper,a high mobility and dynamic topol-ogy of the UAV swarm is particularly considered and the high dynamic mobile topology-based clustering(HDMTC)algorithm is proposed.Simulation and real flight verification results verify that the proposed HDMTC algorithm achieves higher stability of net-work,longer link expiration time(LET),and longer node lifetime,all of which improve the communication performance for UAV swarm networks. 展开更多
关键词 unmanned aerial vehichle(UAV)swarm network UAV clustering MOBILITY virtual tube.
在线阅读 下载PDF
基于k-means算法的聚类个数确定方法改进 被引量:2
3
作者 王丙参 王国长 魏艳华 《统计与决策》 北大核心 2025年第7期59-64,共6页
文章基于k-means算法探讨了最优聚类个数k*的确定方法:第一类是统计量方法;第二类是聚类算法不稳定性方法,即基于两次聚类结果间的距离,利用交叉验证、随机抽样取交集、自助法来构建聚类算法估计不稳定性指标,并根据投票、最小化均值方... 文章基于k-means算法探讨了最优聚类个数k*的确定方法:第一类是统计量方法;第二类是聚类算法不稳定性方法,即基于两次聚类结果间的距离,利用交叉验证、随机抽样取交集、自助法来构建聚类算法估计不稳定性指标,并根据投票、最小化均值方法确定k^(*)。数值模拟结果显示:在给定k^(*)的情况下,聚类结果与标签的距离或相似度可作为评价聚类结果的指标,为聚类算法评价提供了新的借鉴;基于k-means算法确定k^(*)的前提是数据集根据欧氏距离可明显分为几簇,相对而言,聚类算法不稳定性方法优于统计量方法;对于不稳定性指标,交叉验证估计方法与随机抽样取交集估计方法对抽样个数稳健,抽样个数依次建议略少于样本容量的1/3、80%;自助抽样估计方法由于利用了全部样本,因此效率更高;4种不稳定性指标没有显著差异,投票与最小化均值方法也没有显著差异。 展开更多
关键词 K-MEANS算法 聚类个数 统计量 不稳定性
在线阅读 下载PDF
基于深度自适应K-means++算法的电抗器声纹聚类方法 被引量:2
4
作者 闵永智 郝大宇 +2 位作者 王果 何怡刚 贺建山 《电力系统保护与控制》 北大核心 2025年第8期1-13,共13页
在高压并联电抗器声纹信号监测系统中,长时海量无标签声纹的高维非平稳性导致特征提取困难、无监督聚类适应性差。由此提出了一种基于深度自适应K-means++算法(deep adaptive K-means++clustering algorithm,DAKCA)的750 kV电抗器声纹... 在高压并联电抗器声纹信号监测系统中,长时海量无标签声纹的高维非平稳性导致特征提取困难、无监督聚类适应性差。由此提出了一种基于深度自适应K-means++算法(deep adaptive K-means++clustering algorithm,DAKCA)的750 kV电抗器声纹聚类方法。首先通过采用两阶段无监督策略微调的改进堆叠稀疏自编码器(stacked sparse autoencoder,SSAE),对快速傅里叶变换后的归一化频域数据提取电抗器原始声纹32维深度特征。进一步提出了依据最近邻聚类有效性指标(clustering validation index based on nearest neighbors,CVNN)的自适应K-means++聚类算法,构建了能自适应确定最优聚类个数的电抗器声纹聚类模型。最后通过西北地区某750 kV电抗器实测声纹数据集进行了验证。结果表明,DAKCA算法对无标签声纹数据在不同样本均衡程度下能够稳定提取32维深度特征,并实现最优聚类,为直接高效利用电抗器无标签声纹数据提供了参考。 展开更多
关键词 750 kV电抗器 声纹聚类 自适应聚类算法 稀疏自编码器 深度自适应K-means++算法
在线阅读 下载PDF
基于K互近邻与核密度估计的DPC算法 被引量:2
5
作者 周玉 夏浩 +1 位作者 刘虹瑜 白磊 《北京航空航天大学学报》 北大核心 2025年第6期1978-1990,共13页
快速搜索和发现密度峰值聚类(DPC)算法是一种基于密度的聚类算法。该算法不需要迭代和过多的设定参数,但由于计算局部密度时没有考虑数据的局部结构,导致无法识别簇密度小的聚类中心。针对此问题,提出基于K互近邻(KN)和核密度估计(KDE)... 快速搜索和发现密度峰值聚类(DPC)算法是一种基于密度的聚类算法。该算法不需要迭代和过多的设定参数,但由于计算局部密度时没有考虑数据的局部结构,导致无法识别簇密度小的聚类中心。针对此问题,提出基于K互近邻(KN)和核密度估计(KDE)的DPC(KKDPC)算法。通过K近邻和核密度估计方法得到数据点的K互近邻数量和局部核密度;将K互近邻数量与局部核密度进行加和获得新的局部密度;根据数据点的局部密度得到相对距离,并通过构建决策图选取聚类中心及分配非中心点。利用人工数据集和真实数据集进行实验,并与DPC、基于密度的噪声空间聚类应用(DBSCAN)、K-means、模糊C均值聚类算法(FCM)、基于K近邻的DPC(DPCKNN)、近邻优化DPC(DPC-NNO)、基于模糊加权共享邻居的DPC(DPC-FWSN)算法进行对比。通过计算调整互信息(AMI)、调整兰德指数(ARI)、归一化互信息(NMI)来验证KKDPC算法的性能。实验结果表明:KKDPC算法能更加准确地识别聚类中心,有效地提高聚类精度。 展开更多
关键词 聚类算法 密度峰值 K近邻 K互近邻 核密度估计
在线阅读 下载PDF
融合与分离之困:算法异化下学术用户AIGC技术使用意愿研究 被引量:2
6
作者 张宁 陈江玲 袁勤俭 《现代情报》 北大核心 2025年第5期34-48,共15页
[目的/意义]人工智能(AI)技术在创新发展的同时也产生了算法异化。本研究以算法进步带来的异化现象为切入点,引入矛盾态度概念,研究学术用户人工智能生成内容(AIGC)技术使用意愿形成机制,为促成学术用户AIGC技术合理使用、技术服务商改... [目的/意义]人工智能(AI)技术在创新发展的同时也产生了算法异化。本研究以算法进步带来的异化现象为切入点,引入矛盾态度概念,研究学术用户人工智能生成内容(AIGC)技术使用意愿形成机制,为促成学术用户AIGC技术合理使用、技术服务商改进平台功能以及相关部门算法治理提供借鉴与参考。[方法/过程]基于ABC态度模型和自我调节理论,从算法欣赏和算法厌恶的角度构建算法异化下影响学术用户AIGC技术使用的理论模型,采用结构方程模型分析(SEM)和模糊集定性比较分析(fsQCA)的方法,对425份问卷数据进行实证分析。[结果/结论]SEM结果证实了矛盾态度对学术用户的AIGC使用意愿具有显著负向影响。算法欣赏(信息质量、功能质量)负向影响矛盾态度,算法厌恶(信息异化、治理滞后)正向影响矛盾态度,矛盾态度则在算法欣赏、算法厌恶和使用意愿间起到中介作用。同时,算法素养和社会支持在矛盾态度和AIGC技术使用意愿间起着调节作用;fsQCA结果进一步显示,质量导向型(S1)、自我效能型(S2)和群体驱动型(S3)形成高使用意愿,而风险规避型(NS1)和规范缺失型(NS2)会引发非高使用意愿。 展开更多
关键词 信息行为 算法异化 矛盾态度 算法欣赏 算法厌恶 AIGC 使用意愿
在线阅读 下载PDF
基于多策略改进灰狼算法的无人机路径规划 被引量:4
7
作者 宋宇 高岗 +1 位作者 梁超 徐军生 《电子测量技术》 北大核心 2025年第1期84-91,共8页
针对传统的灰狼算法在三维路径规划中容易陷入局部最优等问题,本文提出了一种改进的灰狼算法。首先,对三维威胁区域进行环境建模,对约束条件规定无人机飞行的总成本函数;其次,在灰狼种群初始化中加入了混沌序列和准反向学习策略,增加了... 针对传统的灰狼算法在三维路径规划中容易陷入局部最优等问题,本文提出了一种改进的灰狼算法。首先,对三维威胁区域进行环境建模,对约束条件规定无人机飞行的总成本函数;其次,在灰狼种群初始化中加入了混沌序列和准反向学习策略,增加了群种多样性以及未知领域的搜索范围,通过对自适应权重因子的改进来更新个体位置,从而加快收敛速度;最后,为了避免陷入局部最优,引入了粒子群算法从而平衡全局开发与局部收敛。通过实验结果表明,相较于另外3种典型路径规划算法,改进灰狼算法可以寻找出一条安全可行的路径,并且有着较稳定的寻优能力。 展开更多
关键词 无人机 三维路径规划 混沌序列 准反向学习 灰狼算法 粒子群算法
在线阅读 下载PDF
算法市场的兴起:概念、挑战与未来发展 被引量:2
8
作者 林建浩 张一帆 +1 位作者 石沛昌 吴俊樊 《南方经济》 北大核心 2025年第1期1-17,共17页
人工智能是新一轮科技革命和产业变革的重要驱动力量,人工智能发展离不开数据、算法和算力组成的“三驾马车”。其中,算法作为激发算力潜能与实现数据价值的重要技术环节,是推进“人工智能+”进程与新质生产力形成的核心驱动力。与数据... 人工智能是新一轮科技革命和产业变革的重要驱动力量,人工智能发展离不开数据、算法和算力组成的“三驾马车”。其中,算法作为激发算力潜能与实现数据价值的重要技术环节,是推进“人工智能+”进程与新质生产力形成的核心驱动力。与数据要素市场相比,算法市场的商业化进展明显滞后,其交易机制和市场结构尚缺少系统深入的研究。文章探讨了算法市场的交易标的、市场结构及其关键特征,梳理了算法确权保护和算法流通机制方面面临的主要挑战,并总结了算法确权和流通市场发展的实践探索。通过分析算法市场与知识产权、数据要素市场,文章发现,算法与知识产权在创新性和虚拟性方面具有相似性,但对隐私数据的依赖性和开闭源算法的差异性使其确权保护更具复杂性。同时,算法与数据要素市场共享场景依赖和非标特征,但算法更强的外部依赖性对其流通提出了更高要求。针对我国算法市场当前面临的诸多挑战,文章提出构建以政府和市场双驱动为核心的算法交易与流通机制的政策建议,通过优化确权机制、促进供需匹配、降低使用门槛以及推动跨境流通,以促进算法市场的健康发展和广泛应用。 展开更多
关键词 算法市场 数字经济 算法确权
在线阅读 下载PDF
面向无线传感网络安全的轻量级加密算法研究 被引量:1
9
作者 石鲁生 朱慧博 《传感技术学报》 北大核心 2025年第1期168-173,共6页
轻量级加密算法需在保证安全性的同时尽可能地降低计算和存储资源的消耗,以适应传感器节点的硬件限制。为同时提高数据传输的安全性和准确性,降低传感器节点能耗和计算量,提出面向无线传感网络安全的轻量级加密算法。建立传感器节点分... 轻量级加密算法需在保证安全性的同时尽可能地降低计算和存储资源的消耗,以适应传感器节点的硬件限制。为同时提高数据传输的安全性和准确性,降低传感器节点能耗和计算量,提出面向无线传感网络安全的轻量级加密算法。建立传感器节点分簇模型,为簇首分配相应的对称密钥;利用TCDCP算法构建WSN线性回归模型,采集经过密钥分配处理后的感知数据;引入流密钥的轻量级同态加密算法,实现对感知数据的加密、解密处理,增强无线传感网络安全性能。仿真结果表明,所提算法的加密、解密时间分别为1.01 s、1.05 s,解密成功率平均值为97.0%,RAM空间、ROM空间占用字节数分别为770 kB、800 kB,能耗为82 mJ。所提方法能够有效地保护无线传感网络数据的机密性和完整性,降低资源消耗。 展开更多
关键词 无线传感网络 轻量级加密算法 分簇模型 线性回归模型 感知数据采集
在线阅读 下载PDF
基于主成分分析算法和K均值聚类算法的药品库存分类管理 被引量:1
10
作者 唐蕾 邱磊 +1 位作者 俞佳慧 冀召帅 《医药导报》 北大核心 2025年第4期682-686,共5页
目的针对目前药品分类主观性较强、分类标准模糊、影响因素繁杂的问题,探讨一种科学的药品分类方法,以降低库存成本,提高库存的有效性。方法在北京某三级医院2021—2022年历史数据中随机抽取700种药品为研究对象,通过主成分分析(PCA)算... 目的针对目前药品分类主观性较强、分类标准模糊、影响因素繁杂的问题,探讨一种科学的药品分类方法,以降低库存成本,提高库存的有效性。方法在北京某三级医院2021—2022年历史数据中随机抽取700种药品为研究对象,通过主成分分析(PCA)算法和K均值聚类(K-means)算法对研究对象进行分类。结果确定轮廓系数为0.3470的分类数4为最佳分类数,将700种药品分为4类,其中有363种归为第一类,186种归为第二类,94种归为第三类,57种归为第四类。将该文研究的药品分类方法模拟运用到某三级医院2023年第二季度的药品库存管理中,模拟结果表明该分类方法能够降低库存成本,提高库存有效性。结论基于PCA算法和K-means聚类算法的药品分类方法能够为药品库存分类管理提供可靠依据。 展开更多
关键词 药品分类 主成分分析算法 K均值聚类算法 药品库存管理
在线阅读 下载PDF
改进鲸鱼优化算法在前向激光散射颗粒测量技术粒径分布反演中的应用 被引量:1
11
作者 刘会玲 韩星星 +2 位作者 赵蓓 高冰 汪加洁 《光子学报》 北大核心 2025年第3期118-131,共14页
颗粒粒度分布反演算法优化是前向激光散射法测量颗粒粒径分布中的一个关键问题。对于待测颗粒群粒径分布呈现双峰或多峰的情况,由于反演过程中的寻优参数成倍增加,反演计算量成指数增大,传统反演算法存在寻优效率快速下降,鲁棒性和反演... 颗粒粒度分布反演算法优化是前向激光散射法测量颗粒粒径分布中的一个关键问题。对于待测颗粒群粒径分布呈现双峰或多峰的情况,由于反演过程中的寻优参数成倍增加,反演计算量成指数增大,传统反演算法存在寻优效率快速下降,鲁棒性和反演精度迅速恶化等问题。通过改进鲸鱼优化算法在多维函数求解寻优中的特性,针对前向激光散射法中颗粒粒径分布反演问题提出了一种对数形式的自适应概率阈值和非线性变化的收敛因子,提高了鲸鱼优化算法在反演寻优过程中平衡全局搜索以及局部寻优的能力。通过反向学习方法进行初始化以及借助贪婪原则进行个体更新,可以实现对颗粒粒度分布的精确快速反演。仿真结果表明,该算法对在不同程度随机噪声下服从正态分布、Rosin-Rammler分布和Johnson'S_(B)分布的单峰及多峰分布具有很好的鲁棒性与反演精度。将该算法应用于聚苯乙烯标准颗粒群的实验测量,得到了很好的反演结果,验证了该算法在抗噪性能和测量准确性上的有效性。 展开更多
关键词 前向激光散射 群智能优化算法 鲸鱼优化算法 颗粒粒度分布 多峰分布
在线阅读 下载PDF
基于ABWO的并行DCNN优化算法 被引量:1
12
作者 毛伊敏 刘映兴 《计算机工程与设计》 北大核心 2025年第2期353-359,共7页
针对并行DCNN算法在大数据环境下存在特征差异性较小、模型性能不足、参数更新慢和集群并行效率低等问题,提出一种基于ABWO的并行DCNN优化算法PDCNN-ABWO。提出一种基于自适应密度峰值聚类的特征选择策略FS-ADPC划分原始特征,筛选差异... 针对并行DCNN算法在大数据环境下存在特征差异性较小、模型性能不足、参数更新慢和集群并行效率低等问题,提出一种基于ABWO的并行DCNN优化算法PDCNN-ABWO。提出一种基于自适应密度峰值聚类的特征选择策略FS-ADPC划分原始特征,筛选差异性较大的特征;设计一种ResNet-CBAMDW模型,提升模型性能;提出一种基于自适应黑寡妇优化算法的并行训练策略PT-ABWO优化初始参数,加快参数更新速度;提出一种基于大数据基准测试的动态负载均衡策略DLB-BDB,合理分配任务负载,提升集群并行效率。实验结果表明,该算法能够有效提升DCNN在大数据环境下的训练效率。 展开更多
关键词 大数据 并行深度卷积神经网络算法 密度峰值聚类 自适应黑寡妇优化算法 并行训练 基准测试 负载均衡
在线阅读 下载PDF
算法价格歧视违法性认定的挑战与应对 被引量:6
13
作者 曾迪 《中国流通经济》 北大核心 2025年第2期115-126,共12页
算法技术在数据收集、分析和应用等方面的优势能够帮助经营者快速实现价格歧视,提高经营效率。但算法价格歧视行为却对市场其他主体带来损害性影响,包括破坏社会对网络市场的公平感知、扭曲市场竞争秩序、侵害消费者知情权等传统权利和... 算法技术在数据收集、分析和应用等方面的优势能够帮助经营者快速实现价格歧视,提高经营效率。但算法价格歧视行为却对市场其他主体带来损害性影响,包括破坏社会对网络市场的公平感知、扭曲市场竞争秩序、侵害消费者知情权等传统权利和个人信息权等新型权益。为避免上述系列损害性后果持续扩散,亟须对司法实践如何开展算法价格歧视违法性认定做出回应。然而,基于我国当前相关法条分布零散且适用性不强、违法性认定规则的合理性和可行性存疑、抗辩理由适用不明等现实困境,司法实务部门在处理算法价格歧视案件时仍面临严峻挑战。原有的经营者滥用市场支配地位认定路径和违规处理个人信息认定路径不能满足现实司法实践所需,有必要从立法和司法层面对算法价格歧视违法性认定的第三条路径予以拓展与优化。在立法完善过程中,《电子商务法》作为我国电商领域的综合性法律,尤其适合作为规制算法价格歧视的法律依据,建议该法新增“不正当价格行为”违法认定类型,明确将保护消费者知情权和选择权不受侵犯设为底线,确立过错推定原则以平衡当事人之间的证明责任。在算法价格歧视违法性认定的司法实践中,坚持行为主体聚焦、侵害客体明晰、主观违背注意义务、客观造成消费者利益受损的“四要件”认定方法。在此基础上,《电子商务法》通过与《反垄断法》《个人信息保护法》等多部法律之间的协同配合,进一步夯实算法价格歧视违法性认定的法律基础,才能共同助力司法实践顺利推进。 展开更多
关键词 算法时代 算法价格歧视 消费者权益 违法性认定
在线阅读 下载PDF
基于非支配排序遗传算法NSGA-Ⅲ的多目标屏蔽智能优化研究 被引量:1
14
作者 王梦琪 郑征 +3 位作者 梅其良 彭超 高静 周岩 《原子能科学技术》 北大核心 2025年第2期422-428,共7页
本文基于第3代非支配排序遗传算法(NSGA-Ⅲ)开展了多目标屏蔽智能优化方法研究。以乏燃料运输船舶为对象,采用多目标智能优化程序建立一维离散纵标计算模型,针对舱盖上方区域屏蔽结构(混凝土和聚乙烯厚度)进行优化设计,最终得到1组优化... 本文基于第3代非支配排序遗传算法(NSGA-Ⅲ)开展了多目标屏蔽智能优化方法研究。以乏燃料运输船舶为对象,采用多目标智能优化程序建立一维离散纵标计算模型,针对舱盖上方区域屏蔽结构(混凝土和聚乙烯厚度)进行优化设计,最终得到1组优化的屏蔽方案。基于优化后的屏蔽方案,建立真实的三维蒙特卡罗计算模型,和基于混凝土、聚乙烯或含硼硅树脂的方案进行对比,评估优化方案的屏蔽效果。评价指标包括屏蔽厚度、重量、总剂量率和价格等。结果显示,基于所开发的多目标屏蔽智能优化方法优化得到的方案各有特点,包含了多个优选的方案,为设计者提供了更丰富的选择。 展开更多
关键词 多目标优化算法 屏蔽 乏燃料运输船舶 第3代非支配排序遗传算法
在线阅读 下载PDF
基于轻量级改进RT-DETR边缘部署算法的绝缘子缺陷检测 被引量:5
15
作者 姜香菊 王瑞彤 马彦鸿 《电工技术学报》 北大核心 2025年第3期842-854,共13页
随着新型电力系统的不断发展建设,输电线路绝缘子状态智能化巡检成为必然趋势。为方便“云-边-端协同架构”进行边缘部署,该文提出一种轻量级RT-DETR目标检测算法。首先,采用RT-DETR作为基线算法降低优化难度,提高鲁棒性;其次,选择轻量... 随着新型电力系统的不断发展建设,输电线路绝缘子状态智能化巡检成为必然趋势。为方便“云-边-端协同架构”进行边缘部署,该文提出一种轻量级RT-DETR目标检测算法。首先,采用RT-DETR作为基线算法降低优化难度,提高鲁棒性;其次,选择轻量级EMO作为算法特征提取主干,充分学习绝缘子目标的长距离特征交互及缺陷小目标的局部特征交互,并提出基于轻量级注意力的尺度内特征交互模块和轻量级跨尺度特征融合模块设计轻量级高效混合编码器;再次,在轻量级高效混合编码器中引入定位信息补充分支、使用DIoU损失函数结合迁移学习训练技巧,缓解轻量化造成的算法精度下降问题;最后,构建多天气条件绝缘子数据集进行训练验证。实验结果表明,相较于基线算法,所提算法检测精度达到97.2%,只损失0.7个百分点,而参数量和计算量分别下降67.8%和71.2%,检测速度提升2.5倍,满足多天气条件下的输电线路绝缘子状态巡检准确率及边缘部署轻量化要求。 展开更多
关键词 绝缘子缺陷检测 RT-DETR算法 轻量化 边缘部署 目标检测算法
在线阅读 下载PDF
基于ARIMA算法的玉米籽粒储藏温度预测研究 被引量:1
16
作者 陈思羽 徐爱迪 +3 位作者 刘春山 王淑铭 马浏轩 韩雪双 《农机化研究》 北大核心 2025年第9期171-177,186,共8页
外界环境变化对粮堆内部温度的影响较大,针对夏季温度高、湿度大、易发生腐烂霉变的特点,利用夏季高温试验周期内储粮仓各层的温度数据,基于ARIMA算法进行玉米籽粒储藏短期温度预测。利用差分法、ACF图、PACF图确定模型中d、p、q等参数... 外界环境变化对粮堆内部温度的影响较大,针对夏季温度高、湿度大、易发生腐烂霉变的特点,利用夏季高温试验周期内储粮仓各层的温度数据,基于ARIMA算法进行玉米籽粒储藏短期温度预测。利用差分法、ACF图、PACF图确定模型中d、p、q等参数,依据确定的温度预测模型对未来7 d仓内各粮层的温度进行预测,并将预测值与试验值进行对比,通过绝对误差MAE、相对误差MSE评价指标对模型进行评估,结果表明:第1层模型预测值与实际值的绝对误差MAE的平均值为2.96℃,相对误差MSE的平均值为11.37%;第2层模型预测值与实际值的绝对误差MAE的平均值为0.5℃,相对误差MSE的平均值为1.80%;第3层模型预测值与实际值的绝对误差MAE的平均值为0.57℃,相对误差MSE的平均值为1.91%;第4层模型预测值与实际值的绝对误差MAE的平均值为0.28℃,相对误差MSE的平均值为1.02%,各层相对误差均控制在16%以内。试验结果表明建立的ARIMA温度预测模型较适合玉米籽粒储藏短期温度预测,为保障储粮品质提供了理论依据。 展开更多
关键词 玉米籽粒 储藏 ARIMA算法 温度预测
在线阅读 下载PDF
基于粒子群和蜂群算法的无人机路径规划 被引量:4
17
作者 刘晓芬 吴传淑 +1 位作者 张紫瑞 陈珏先 《兵工自动化》 北大核心 2025年第4期107-112,共6页
针对无人机在有威胁战场环境下的2维和3维路径规划问题,提出一种基于粒子群(particleswarm optimization,PSO)和人工蜂群(artificialbeecolony,ABC)混合算法。根据B样条可以修改局部飞行轨迹的特点,引入非均匀B样条曲线优化拐点处的路径... 针对无人机在有威胁战场环境下的2维和3维路径规划问题,提出一种基于粒子群(particleswarm optimization,PSO)和人工蜂群(artificialbeecolony,ABC)混合算法。根据B样条可以修改局部飞行轨迹的特点,引入非均匀B样条曲线优化拐点处的路径,使得到的路径更加平滑,无人机机动转弯相对更少。结果表明:该研究提高了无人机飞行的安全性和高效性,便于无人机的飞行控制跟踪实现。 展开更多
关键词 路径规划 B样条 粒子群算法 人工蜂群算法 飞行控制
在线阅读 下载PDF
基于改进D^(*)Lite算法的疏散路径规划方法研究 被引量:1
18
作者 李墨潇 张建辉 +4 位作者 王晟旻 冯谦 张斌 邱绍峰 耿明 《中国安全生产科学技术》 北大核心 2025年第3期42-49,共8页
为应对应急疏散中大面积路网结构的路径规划问题,提出1种改进D^(*)Lite算法的疏散路径规划方法。首先,根据不同邻域结构的路网特点,采用多邻域网络流遍历方法;其次,为解决算法在路网结构的独头或环形路段中无法继续搜索的问题,提出1种... 为应对应急疏散中大面积路网结构的路径规划问题,提出1种改进D^(*)Lite算法的疏散路径规划方法。首先,根据不同邻域结构的路网特点,采用多邻域网络流遍历方法;其次,为解决算法在路网结构的独头或环形路段中无法继续搜索的问题,提出1种双层搜索的方式;此外,基于路径坡度变化,优化算法的代价计算方式;最后,为检验改进D^(*)Lite算法的路径规划能力,探讨区域危险发生、区域危险新增和区域恢复3种情景下的路径变化,研究D^(*)Lite算法在考虑路径坡度情况下的避险能力。研究结果表明:改进后的算法能够根据危险情况的变化调整路径,且考虑路径坡度能够获得更为准确的疏散时间。研究结果可为应急疏散工作提供指导。 展开更多
关键词 路径规划 应急疏散 改进算法 路径坡度
在线阅读 下载PDF
社交媒体用户参与算法风险治理的影响因素研究 被引量:3
19
作者 孟玺 李庆霜 霍帆帆 《现代情报》 北大核心 2025年第5期49-65,共17页
[目的/意义]探讨社交媒体用户参与算法风险治理的影响因素,有助于提升我国算法风险治理效果,完善多元共治的算法治理体系。[方法/过程]基于刺激—机体—反应(SOR)模型框架,整合社会认知理论和感知价值理论,根据2 313份问卷调查数据开展... [目的/意义]探讨社交媒体用户参与算法风险治理的影响因素,有助于提升我国算法风险治理效果,完善多元共治的算法治理体系。[方法/过程]基于刺激—机体—反应(SOR)模型框架,整合社会认知理论和感知价值理论,根据2 313份问卷调查数据开展实证研究。[结果/结论]研究结果表明,在总效应模型中,算法素养、政府规制与平台算法责任正向显著影响用户参与治理意愿,政府规制是影响最大的刺激因素。加入感知收益和感知风险中介变量后,算法素养、平台算法责任通过感知收益与感知风险的部分中介作用对用户参与治理意愿产生间接影响;政府规制通过感知收益与感知风险的完全中介作用对用户参与治理意愿产生间接影响。研究发现,感知收益的中介作用比感知风险更加显著。研究结论为完善我国算法风险治理体系提供了理论参考,对激励用户参与以实现算法风险多元协同共治具有积极的实践指导意义。 展开更多
关键词 算法素养 政府规制 平台算法责任 用户参与 风险治理
在线阅读 下载PDF
改进A^(*)算法融合DWA机器人路径规划研究 被引量:3
20
作者 曾宪阳 张加旺 《电子测量技术》 北大核心 2025年第6期20-27,共8页
在物流机器人运输流程中,路径规划是核心环节,面临路径不够平滑及算法搜索效率低下的挑战。A^(*)算法作为广泛应用的全局路径规划方法,在应用于物流机器人时存在无法有效实现路径平滑等问题。为此,对传统A^(*)算法进行了改进,通过动态... 在物流机器人运输流程中,路径规划是核心环节,面临路径不够平滑及算法搜索效率低下的挑战。A^(*)算法作为广泛应用的全局路径规划方法,在应用于物流机器人时存在无法有效实现路径平滑等问题。为此,对传统A^(*)算法进行了改进,通过动态加权处理启发函数,并利用Floyd算法去除路径中的冗余点,同时引入安全距离机制以防碰撞。此外,还对路径进行了平滑优化,以更好地适应物流机器人的实际移动需求。MATLAB仿真结果显示,改进后的A^(*)算法相比传统算法在转折点数量上平均减少了58.5%,路径长度缩短了3.19%,遍历点数降低了59.9%。进一步结合DWA算法进行局部路径规划,实现了避障功能。通过仿真和实车实验验证了该融合算法的有效性。 展开更多
关键词 A^(*)算法 路径规划 DWA算法 物流机器人 MATLAB仿真
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部