The complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space is studied.By moment inequality and truncation methods,we establish the...The complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space is studied.By moment inequality and truncation methods,we establish the equivalent conditions of complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space.The results complement the corresponding results in probability space to those for sequences of independent,identically distributed random variables under sublinear expectation space.展开更多
In this paper,we investigate the complete convergence and complete moment conver-gence for weighted sums of arrays of rowwise asymptotically negatively associated(ANA)random variables,without assuming identical distri...In this paper,we investigate the complete convergence and complete moment conver-gence for weighted sums of arrays of rowwise asymptotically negatively associated(ANA)random variables,without assuming identical distribution.The obtained results not only extend those of An and Yuan[1]and Shen et al.[2]to the case of ANA random variables,but also partially improve them.展开更多
An improved genetic algorithm (GA) is proposed based on the analysis of population diversity within the framework of Markov chain. The chaos operator to combat premature convergence concerning two goals of maintaining...An improved genetic algorithm (GA) is proposed based on the analysis of population diversity within the framework of Markov chain. The chaos operator to combat premature convergence concerning two goals of maintaining diversity in the population and sustaining the convergence capacity of the GA is introduced. In the CHaos Genetic Algorithm (CHGA), the population is recycled dynamically whereas the most highly fit chromosome is intact so as to restore diversity and reserve the best schemata which may belong to the optimal solution. The characters of chaos as well as advanced operators and parameter settings can improve both exploration and exploitation capacities of the algorithm. The results of multimodal function optimization show that CHGA performs simple genetic algorithms and effectively alleviates the problem of premature convergence.展开更多
Selection, crossover, and mutation are three main operators of the canonical genetic algorithm (CGA). This paper presents a new approach to the genetic algorithm. This new approach applies only to mutation and selecti...Selection, crossover, and mutation are three main operators of the canonical genetic algorithm (CGA). This paper presents a new approach to the genetic algorithm. This new approach applies only to mutation and selection operators. The paper proves that the search process of the non-crossover genetic algorithm (NCGA) is an ergodic homogeneous Markov chain. The proof of its convergence to global optimum is presented. Some nonlinear multi-modal optimization problems are applied to test the efficacy of the NCGA. NP-hard traveling salesman problem (TSP) is cited here as the benchmark problem to test the efficiency of the algorithm. The simulation result shows that NCGA achieves much faster convergence speed than CGA in terms of CPU time. The convergence speed per epoch of NCGA is also faster than that of CGA.展开更多
The convergence and stability analysis for two end-to-end rate-based congestion control algorithms with unavoidable random loss in packets are presented, which can be caused by, for example, errors on wireless links. ...The convergence and stability analysis for two end-to-end rate-based congestion control algorithms with unavoidable random loss in packets are presented, which can be caused by, for example, errors on wireless links. The convergence rates of these two algorithms are analyzed by linearizing them around their equilibrium points, since they are globally stable and can converge to their unique equilibrium points. Some sufficient conditions for local stability in the presence of round-trip delay are obtained based on the general Nyquist criterion of stability. The stability conditions can be considered to be more general. If random loss in the first congestion control algorithm is not considered, they reduce to the local stability conditions which have been obtained in some literatures. Furthermore, sufficient conditions for local stability of a new congestion control algorithm have also been obtained if random loss is not considered in the second congestion control algorithm.展开更多
In the process of meida Convergence,many researchers paid excessive attention to media technology, industry and management,and ignored the culture dimensions of media convergence. Therefore,to transcend media converge...In the process of meida Convergence,many researchers paid excessive attention to media technology, industry and management,and ignored the culture dimensions of media convergence. Therefore,to transcend media convergence technology, industrial thinking and more to the particularity attach importance to cultural media, it is a right way to achieve media convergence. But in the context of China's culture,media convergence should value the cultural uniqueness and the imbalance of the realistic problems,to reach innovation and breakthrough.展开更多
With its wide use in different fields, the problem of the convergence of simple genetic algorithms (GAs) has been concerned. In the past, the research on the convergence of GAs was based on Holland's model theorem...With its wide use in different fields, the problem of the convergence of simple genetic algorithms (GAs) has been concerned. In the past, the research on the convergence of GAs was based on Holland's model theorem. The diversity of the evolutionary population and the convergence of GAs are studied by using the concept of negentropy based on the discussion of the characteristic of GA. Some test functions are used to test the convergence of GAs, and good results have been obtained. It is shown that the global optimization may be obtained by selecting appropriate parameters of simple GAs if the evolution time is enough.展开更多
A robust controller for bank to turn(BTT) missiles with aerodynamic fins and reaction jet control system(RCS) is developed based on nonlinear control dynamic models comprising couplings and aerodynamic uncertainties. ...A robust controller for bank to turn(BTT) missiles with aerodynamic fins and reaction jet control system(RCS) is developed based on nonlinear control dynamic models comprising couplings and aerodynamic uncertainties. The fixed time convergence theory is incorporated with the sliding mode control technique to ensure that the system tracks the desired command within uniform bounded time under different initial conditions. Unlike previous terminal sliding mode approaches, the bound of settling time is independent of the initial state, which means performance metrics like convergence rate can be predicted beforehand. To reduce the burden of control design in terms of robustness, extended state observer(ESO) is introduced for uncertainty estimation with the output substituted into the controller as feedforward compensation. Cascade control structure is employed with the proposed control law and therein the compound control signal is obtained.Afterwards, control inputs for two kinds of actuators are allocated on the basis of their inherent characteristics. Finally, a number of simulations are carried out and demonstrate the effectiveness of the designed controller.展开更多
An adaptive genetic algorithm with diversity-guided mutation, which combines adaptive probabilities of crossover and mutation was proposed. By means of homogeneous finite Markov chains, it is proved that adaptive gene...An adaptive genetic algorithm with diversity-guided mutation, which combines adaptive probabilities of crossover and mutation was proposed. By means of homogeneous finite Markov chains, it is proved that adaptive genetic algorithm with diversity-guided mutation and genetic algorithm with diversity-guided mutation converge to the global optimum if they maintain the best solutions, and the convergence of adaptive genetic algorithms with adaptive probabilities of crossover and mutation was studied. The performances of the above algorithms in optimizing several unimodal and multimodal functions were compared. The results show that for multimodal functions the average convergence generation of the adaptive genetic algorithm with diversity-guided mutation is about 900 less than that of (adaptive) genetic algorithm with adaptive probabilities and genetic algorithm with diversity-guided mutation, and the adaptive genetic algorithm with diversity-guided mutation does not lead to premature convergence. It is also shown that the better balance between overcoming premature convergence and quickening convergence speed can be gotten.展开更多
The Newton-Like algorithm with price estimation error in optimization flow control in network is analyzed. The estimation error is treated as inexactness of the gradient and the inexact descent direction is analyzed. ...The Newton-Like algorithm with price estimation error in optimization flow control in network is analyzed. The estimation error is treated as inexactness of the gradient and the inexact descent direction is analyzed. Based on the optimization theory, a sufficient condition for convergence of this algorithm with bounded price estimation error is obtained. Furthermore, even when this sufficient condition doesn't hold, this algorithm can also converge, provided a modified step size, and an attraction region is obtained. Based on Lasalle's invariance principle applied to a suitable Lyapunov function, the dynamic system described by this algorithm is proved to be global stability if the error is zero. And the Newton-Like algorithm with bounded price estimation error is also globally stable if the error satisfies the sufficient condition for convergence. All trajectories ultimately converge to the equilibrium point.展开更多
Globally exponential stability (which implies convergence and uniqueness) of their classical iterative algorithm is established using methods of heat equations and energy integral after embedding the discrete iterat...Globally exponential stability (which implies convergence and uniqueness) of their classical iterative algorithm is established using methods of heat equations and energy integral after embedding the discrete iteration into a continuous flow. The stability condition depends explicitly on smoothness of the image sequence, size of image domain, value of the regularization parameter, and finally discretization step. Specifically, as the discretization step approaches to zero, stability holds unconditionally. The analysis also clarifies relations among the iterative algorithm, the original variation formulation and the PDE system. The proper regularity of solution and natural images is briefly surveyed and discussed. Experimental results validate the theoretical claims both on convergence and exponential stability.展开更多
For deep tunnel projects,selecting an appropriate initial support distance is critical to improving the self-supporting capacity of surrounding rock.In this work,an intuitive method for determining the tunnel’s initi...For deep tunnel projects,selecting an appropriate initial support distance is critical to improving the self-supporting capacity of surrounding rock.In this work,an intuitive method for determining the tunnel’s initial support distance was proposed.First,based on the convergence-confinement method,a three-dimensional analytical model was constructed by combining an analytical solution of a non-circular tunnel with the Tecplot software.Then,according to the integral failure criteria of rock,the failure tendency coefficients of hard surrounding rock were computed and the spatial distribution plots of that were constructed.On this basis,the tunnel’s key failure positions were identified,and the relationship between the failure tendency coefficient at key failure positions and their distances from the working face was established.Finally,the distance from the working face that corresponds to the critical failure tendency coefficient was taken as the optimal support distance.A practical project was used as an example,and a reasonable initial support distance was successfully determined by applying the developed method.Moreover,it is found that the stability of hard surrounding rock decreases rapidly within the range of 1.0D(D is the tunnel diameter)from the working face,and tends to be stable outside the range of 1.0D.展开更多
In this paper, a mathematical model of real-time simulation is given, and the problem of convergence on real-time Runge-Kutta algorithms is analysed. At last a theorem on the relation between the order of compensation...In this paper, a mathematical model of real-time simulation is given, and the problem of convergence on real-time Runge-Kutta algorithms is analysed. At last a theorem on the relation between the order of compensation and the convergent order of real-time algorithm is proved.展开更多
An idea of relaxing the effect of delay when computing the Runge-Kutta stages in the current step and a class of two-step continuity Runge-Kutta methods (TSCRK) is presented. Their construction, their order conditio...An idea of relaxing the effect of delay when computing the Runge-Kutta stages in the current step and a class of two-step continuity Runge-Kutta methods (TSCRK) is presented. Their construction, their order conditions and their convergence are studied. The two-step continuity Runge-Kutta methods possess good numerical stability properties and higher stage-order, and keep the explicit process of computing the Runge-Kutta stages. The numerical experiments show that the TSCRK methods are efficient.展开更多
Some sufficient conditions for the global exponential stability and lower bounds on the rate of exponential convergence of the cellular neural networks with delay (DCNNs) are obtained by means of a method based on del...Some sufficient conditions for the global exponential stability and lower bounds on the rate of exponential convergence of the cellular neural networks with delay (DCNNs) are obtained by means of a method based on delay differential inequality. The method, which does not make use of any Lyapunov functional, is simple and valid for the stability analysis of neural networks with delay. Some previously established results in this paper are shown to be special casses of the presented result.展开更多
A global fast convergent integrated guidance and control design approach is proposed. A disturbance observer is utilized to estimate the uncertainties of integrated guidance and control model in finite time. According...A global fast convergent integrated guidance and control design approach is proposed. A disturbance observer is utilized to estimate the uncertainties of integrated guidance and control model in finite time. According to the multiple sliding-mode surface control, the independent nonsingular terminal sliding functions are presented in each step, and all the sliding-mode surfaces run parallel. These presented sliding-mode surfaces keep zero value from a certain time, and the system states converge quickly in sliding phase. Therefore, the system response speed is increased. The proposed method offers the global convergent time analytically, which is useful to optimize the transient performance of system. Simulation results are used to verify the proposed method.展开更多
For improving the performance of differential geometric guidance command(DGGC), a new formation of this guidance law is proposed, which can guarantee the finite time convergence(FTC) of the line of sight(LOS) rate to ...For improving the performance of differential geometric guidance command(DGGC), a new formation of this guidance law is proposed, which can guarantee the finite time convergence(FTC) of the line of sight(LOS) rate to zero or its neighborhood against maneuvering targets in three-dimensional(3D) space. The extended state observer(ESO) is employed to estimate the target acceleration, which makes the new DGGC more applicable to practical interception scenarios. Finally, the effectiveness of this newly proposed guidance command is demonstrated by the numerical simulation results.展开更多
Formulizations of mutation and crossover operators independent of representation of solutions are proposed. A kind of precisely quantitative Markov chain of populations of standard genetic algorithms is modeled. It is...Formulizations of mutation and crossover operators independent of representation of solutions are proposed. A kind of precisely quantitative Markov chain of populations of standard genetic algorithms is modeled. It is proved that inadequate parameters of mutation and crossover probabilities degenerate standard genetic algorithm to a class of random search algorithms without selection bias toward any solution based on fitness. After introducing elitist reservation, the stochastic matrix of Markov chain of the best-so-far individual with the highest fitness is derived.The average convergence velocity of genetic algorithms is defined as the mathematical expectation of the mean absorbing time steps that the best-so-far individual transfers from any initial solution to the global optimum. Using the stochastic matrix of the best-so-far individual, a theoretic method and the computing process of estimating the average convergence velocity are proposed.展开更多
基金supported by Doctoral Scientific Research Starting Foundation of Jingdezhen Ceramic University(Grant No.102/01003002031)Re-accompanying Funding Project of Academic Achievements of Jingdezhen Ceramic University(Grant Nos.215/20506277,215/20506341)。
文摘The complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space is studied.By moment inequality and truncation methods,we establish the equivalent conditions of complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space.The results complement the corresponding results in probability space to those for sequences of independent,identically distributed random variables under sublinear expectation space.
基金National Natural Science Foundation of China (Grant Nos.12061028, 71871046)Support Program of the Guangxi China Science Foundation (Grant No.2018GXNSFAA281011)。
文摘In this paper,we investigate the complete convergence and complete moment conver-gence for weighted sums of arrays of rowwise asymptotically negatively associated(ANA)random variables,without assuming identical distribution.The obtained results not only extend those of An and Yuan[1]and Shen et al.[2]to the case of ANA random variables,but also partially improve them.
基金The National Natural Science Foundation of China !(No .699740 43 )
文摘An improved genetic algorithm (GA) is proposed based on the analysis of population diversity within the framework of Markov chain. The chaos operator to combat premature convergence concerning two goals of maintaining diversity in the population and sustaining the convergence capacity of the GA is introduced. In the CHaos Genetic Algorithm (CHGA), the population is recycled dynamically whereas the most highly fit chromosome is intact so as to restore diversity and reserve the best schemata which may belong to the optimal solution. The characters of chaos as well as advanced operators and parameter settings can improve both exploration and exploitation capacities of the algorithm. The results of multimodal function optimization show that CHGA performs simple genetic algorithms and effectively alleviates the problem of premature convergence.
文摘Selection, crossover, and mutation are three main operators of the canonical genetic algorithm (CGA). This paper presents a new approach to the genetic algorithm. This new approach applies only to mutation and selection operators. The paper proves that the search process of the non-crossover genetic algorithm (NCGA) is an ergodic homogeneous Markov chain. The proof of its convergence to global optimum is presented. Some nonlinear multi-modal optimization problems are applied to test the efficacy of the NCGA. NP-hard traveling salesman problem (TSP) is cited here as the benchmark problem to test the efficiency of the algorithm. The simulation result shows that NCGA achieves much faster convergence speed than CGA in terms of CPU time. The convergence speed per epoch of NCGA is also faster than that of CGA.
基金supported in part by the National Natural Science Foundation of China (10671170,60404022)the National Outstanding Youth Foundation of China (60525303)and the Natural Science Foundation of Hebei Province (07M005,F2008000864)
文摘The convergence and stability analysis for two end-to-end rate-based congestion control algorithms with unavoidable random loss in packets are presented, which can be caused by, for example, errors on wireless links. The convergence rates of these two algorithms are analyzed by linearizing them around their equilibrium points, since they are globally stable and can converge to their unique equilibrium points. Some sufficient conditions for local stability in the presence of round-trip delay are obtained based on the general Nyquist criterion of stability. The stability conditions can be considered to be more general. If random loss in the first congestion control algorithm is not considered, they reduce to the local stability conditions which have been obtained in some literatures. Furthermore, sufficient conditions for local stability of a new congestion control algorithm have also been obtained if random loss is not considered in the second congestion control algorithm.
文摘In the process of meida Convergence,many researchers paid excessive attention to media technology, industry and management,and ignored the culture dimensions of media convergence. Therefore,to transcend media convergence technology, industrial thinking and more to the particularity attach importance to cultural media, it is a right way to achieve media convergence. But in the context of China's culture,media convergence should value the cultural uniqueness and the imbalance of the realistic problems,to reach innovation and breakthrough.
文摘With its wide use in different fields, the problem of the convergence of simple genetic algorithms (GAs) has been concerned. In the past, the research on the convergence of GAs was based on Holland's model theorem. The diversity of the evolutionary population and the convergence of GAs are studied by using the concept of negentropy based on the discussion of the characteristic of GA. Some test functions are used to test the convergence of GAs, and good results have been obtained. It is shown that the global optimization may be obtained by selecting appropriate parameters of simple GAs if the evolution time is enough.
基金supported by the National Natural Science Foundation of China(11572036)
文摘A robust controller for bank to turn(BTT) missiles with aerodynamic fins and reaction jet control system(RCS) is developed based on nonlinear control dynamic models comprising couplings and aerodynamic uncertainties. The fixed time convergence theory is incorporated with the sliding mode control technique to ensure that the system tracks the desired command within uniform bounded time under different initial conditions. Unlike previous terminal sliding mode approaches, the bound of settling time is independent of the initial state, which means performance metrics like convergence rate can be predicted beforehand. To reduce the burden of control design in terms of robustness, extended state observer(ESO) is introduced for uncertainty estimation with the output substituted into the controller as feedforward compensation. Cascade control structure is employed with the proposed control law and therein the compound control signal is obtained.Afterwards, control inputs for two kinds of actuators are allocated on the basis of their inherent characteristics. Finally, a number of simulations are carried out and demonstrate the effectiveness of the designed controller.
文摘An adaptive genetic algorithm with diversity-guided mutation, which combines adaptive probabilities of crossover and mutation was proposed. By means of homogeneous finite Markov chains, it is proved that adaptive genetic algorithm with diversity-guided mutation and genetic algorithm with diversity-guided mutation converge to the global optimum if they maintain the best solutions, and the convergence of adaptive genetic algorithms with adaptive probabilities of crossover and mutation was studied. The performances of the above algorithms in optimizing several unimodal and multimodal functions were compared. The results show that for multimodal functions the average convergence generation of the adaptive genetic algorithm with diversity-guided mutation is about 900 less than that of (adaptive) genetic algorithm with adaptive probabilities and genetic algorithm with diversity-guided mutation, and the adaptive genetic algorithm with diversity-guided mutation does not lead to premature convergence. It is also shown that the better balance between overcoming premature convergence and quickening convergence speed can be gotten.
基金supported in part by the National Outstanding Youth Foundation of P.R.China (60525303)the National Natural Science Foundation of P.R.China(60404022,60604004)+2 种基金the Natural Science Foundation of Hebei Province (102160)the special projects in mathematics funded by the Natural Science Foundation of Hebei Province(07M005)the NS of Education Office in Hebei Province (2004123).
文摘The Newton-Like algorithm with price estimation error in optimization flow control in network is analyzed. The estimation error is treated as inexactness of the gradient and the inexact descent direction is analyzed. Based on the optimization theory, a sufficient condition for convergence of this algorithm with bounded price estimation error is obtained. Furthermore, even when this sufficient condition doesn't hold, this algorithm can also converge, provided a modified step size, and an attraction region is obtained. Based on Lasalle's invariance principle applied to a suitable Lyapunov function, the dynamic system described by this algorithm is proved to be global stability if the error is zero. And the Newton-Like algorithm with bounded price estimation error is also globally stable if the error satisfies the sufficient condition for convergence. All trajectories ultimately converge to the equilibrium point.
基金Foundation item: Projects(60835005, 90820302) supported by the National Natural Science Foundation of China Project(2007CB311001) supported by the National Basic Research Program of China
文摘Globally exponential stability (which implies convergence and uniqueness) of their classical iterative algorithm is established using methods of heat equations and energy integral after embedding the discrete iteration into a continuous flow. The stability condition depends explicitly on smoothness of the image sequence, size of image domain, value of the regularization parameter, and finally discretization step. Specifically, as the discretization step approaches to zero, stability holds unconditionally. The analysis also clarifies relations among the iterative algorithm, the original variation formulation and the PDE system. The proper regularity of solution and natural images is briefly surveyed and discussed. Experimental results validate the theoretical claims both on convergence and exponential stability.
基金Project(2021JLM-49) supported by Natural Science Basic Research Program of Shaanxi-Joint Fund of Hanjiang to Weihe River Valley Water Diversion Project,ChinaProject(42077248) supported by the National Natural Science Foundation of China
文摘For deep tunnel projects,selecting an appropriate initial support distance is critical to improving the self-supporting capacity of surrounding rock.In this work,an intuitive method for determining the tunnel’s initial support distance was proposed.First,based on the convergence-confinement method,a three-dimensional analytical model was constructed by combining an analytical solution of a non-circular tunnel with the Tecplot software.Then,according to the integral failure criteria of rock,the failure tendency coefficients of hard surrounding rock were computed and the spatial distribution plots of that were constructed.On this basis,the tunnel’s key failure positions were identified,and the relationship between the failure tendency coefficient at key failure positions and their distances from the working face was established.Finally,the distance from the working face that corresponds to the critical failure tendency coefficient was taken as the optimal support distance.A practical project was used as an example,and a reasonable initial support distance was successfully determined by applying the developed method.Moreover,it is found that the stability of hard surrounding rock decreases rapidly within the range of 1.0D(D is the tunnel diameter)from the working face,and tends to be stable outside the range of 1.0D.
文摘In this paper, a mathematical model of real-time simulation is given, and the problem of convergence on real-time Runge-Kutta algorithms is analysed. At last a theorem on the relation between the order of compensation and the convergent order of real-time algorithm is proved.
文摘An idea of relaxing the effect of delay when computing the Runge-Kutta stages in the current step and a class of two-step continuity Runge-Kutta methods (TSCRK) is presented. Their construction, their order conditions and their convergence are studied. The two-step continuity Runge-Kutta methods possess good numerical stability properties and higher stage-order, and keep the explicit process of computing the Runge-Kutta stages. The numerical experiments show that the TSCRK methods are efficient.
文摘Some sufficient conditions for the global exponential stability and lower bounds on the rate of exponential convergence of the cellular neural networks with delay (DCNNs) are obtained by means of a method based on delay differential inequality. The method, which does not make use of any Lyapunov functional, is simple and valid for the stability analysis of neural networks with delay. Some previously established results in this paper are shown to be special casses of the presented result.
基金Project(61673386)supported by the National Natural Science Foundation of ChinaProject(2018QNJJ006)supported by the High-Tech Institute of Xi’an,China
文摘A global fast convergent integrated guidance and control design approach is proposed. A disturbance observer is utilized to estimate the uncertainties of integrated guidance and control model in finite time. According to the multiple sliding-mode surface control, the independent nonsingular terminal sliding functions are presented in each step, and all the sliding-mode surfaces run parallel. These presented sliding-mode surfaces keep zero value from a certain time, and the system states converge quickly in sliding phase. Therefore, the system response speed is increased. The proposed method offers the global convergent time analytically, which is useful to optimize the transient performance of system. Simulation results are used to verify the proposed method.
文摘For improving the performance of differential geometric guidance command(DGGC), a new formation of this guidance law is proposed, which can guarantee the finite time convergence(FTC) of the line of sight(LOS) rate to zero or its neighborhood against maneuvering targets in three-dimensional(3D) space. The extended state observer(ESO) is employed to estimate the target acceleration, which makes the new DGGC more applicable to practical interception scenarios. Finally, the effectiveness of this newly proposed guidance command is demonstrated by the numerical simulation results.
文摘Formulizations of mutation and crossover operators independent of representation of solutions are proposed. A kind of precisely quantitative Markov chain of populations of standard genetic algorithms is modeled. It is proved that inadequate parameters of mutation and crossover probabilities degenerate standard genetic algorithm to a class of random search algorithms without selection bias toward any solution based on fitness. After introducing elitist reservation, the stochastic matrix of Markov chain of the best-so-far individual with the highest fitness is derived.The average convergence velocity of genetic algorithms is defined as the mathematical expectation of the mean absorbing time steps that the best-so-far individual transfers from any initial solution to the global optimum. Using the stochastic matrix of the best-so-far individual, a theoretic method and the computing process of estimating the average convergence velocity are proposed.