In the cloud era, the control objects are becoming larger and the information processing is more complex, and it is difficult for traditional control systems to process massive data in a timely manner. In view of the ...In the cloud era, the control objects are becoming larger and the information processing is more complex, and it is difficult for traditional control systems to process massive data in a timely manner. In view of the difficulty of data processing in the cloud era, it is extremely important to perform massive data operations through cloud servers. Unmanned aeriel vehicle(UAV) control is the representative of the intelligent field. Based on the ant colony algorithm and incorporating the potential field method, an improved potential field ant colony algorithm is designed. To deal with the path planning problem of UAVs, the potential field ant colony algorithm shortens the optimal path distance by 6.7%, increases the algorithm running time by39.3%, and increases the maximum distance by 24.1% compared with the previous improvement. The cloud server is used to process the path problem of the UAV and feedback the calculation results in real time. Simulation experiments verify the effectiveness of the new algorithm in the cloud environment.展开更多
当今科技飞速发展,隐私保护成为一个重要议题.为了确保数据的安全性,通常选择将数据加密后存储在云服务器上,然而这样云服务器无法对加密后的数据进行计算、统计等有效处理,从而使得很多应用场景受限.为了解决这个问题,提出一种基于环...当今科技飞速发展,隐私保护成为一个重要议题.为了确保数据的安全性,通常选择将数据加密后存储在云服务器上,然而这样云服务器无法对加密后的数据进行计算、统计等有效处理,从而使得很多应用场景受限.为了解决这个问题,提出一种基于环上容错学习(ring learning with error,R-LWE)问题的PKE-MET(public-key encryption with a multiple-ciphertext equality test)方案,并给出了正确性和安全性分析.该方案允许云服务器同时对多个密文执行相等性测试,还能够抵抗量子计算攻击.基于Palisade库对方案进行了实现,从理论与实现的角度与其他方案进行了比较分析.相较于其他方案,该方案具有高效、运行时间短的优点.展开更多
针对云服务器中存在软件老化现象,将造成系统性能衰退与可靠性下降问题,借鉴剩余使用寿命(Remaining useful life,RUL)概念,提出基于支持向量和高斯函数拟合(Support vectors and Gaussian function fitting,SVs-GFF)的老化预测方法.首...针对云服务器中存在软件老化现象,将造成系统性能衰退与可靠性下降问题,借鉴剩余使用寿命(Remaining useful life,RUL)概念,提出基于支持向量和高斯函数拟合(Support vectors and Gaussian function fitting,SVs-GFF)的老化预测方法.首先,提取云服务器老化数据的统计特征指标,并采用支持向量回归(Support vector regression,SVR)对统计特征指标进行数据稀疏化处理,得到支持向量(Support vectors,SVs)序列数据;然后,建立基于密度聚类的高斯函数拟合(Gaussian function fitting,GFF)模型,对不同核函数下的支持向量序列数据进行老化曲线拟合,并采用Fréchet距离优化算法选取最优老化曲线;最后,基于最优老化曲线,评估系统到达老化阈值前的RUL,以预测系统何时发生老化.在OpenStack云服务器4个老化数据集上的实验结果表明,基于RUL和SVs-GFF的云服务器老化预测方法与传统预测方法相比,具有更高的预测精度和更快的收敛速度.展开更多
基金supported by the Natural Science Foundation of Heilongjiang Province (LH2021E045)。
文摘In the cloud era, the control objects are becoming larger and the information processing is more complex, and it is difficult for traditional control systems to process massive data in a timely manner. In view of the difficulty of data processing in the cloud era, it is extremely important to perform massive data operations through cloud servers. Unmanned aeriel vehicle(UAV) control is the representative of the intelligent field. Based on the ant colony algorithm and incorporating the potential field method, an improved potential field ant colony algorithm is designed. To deal with the path planning problem of UAVs, the potential field ant colony algorithm shortens the optimal path distance by 6.7%, increases the algorithm running time by39.3%, and increases the maximum distance by 24.1% compared with the previous improvement. The cloud server is used to process the path problem of the UAV and feedback the calculation results in real time. Simulation experiments verify the effectiveness of the new algorithm in the cloud environment.
文摘当今科技飞速发展,隐私保护成为一个重要议题.为了确保数据的安全性,通常选择将数据加密后存储在云服务器上,然而这样云服务器无法对加密后的数据进行计算、统计等有效处理,从而使得很多应用场景受限.为了解决这个问题,提出一种基于环上容错学习(ring learning with error,R-LWE)问题的PKE-MET(public-key encryption with a multiple-ciphertext equality test)方案,并给出了正确性和安全性分析.该方案允许云服务器同时对多个密文执行相等性测试,还能够抵抗量子计算攻击.基于Palisade库对方案进行了实现,从理论与实现的角度与其他方案进行了比较分析.相较于其他方案,该方案具有高效、运行时间短的优点.
文摘针对云服务器中存在软件老化现象,将造成系统性能衰退与可靠性下降问题,借鉴剩余使用寿命(Remaining useful life,RUL)概念,提出基于支持向量和高斯函数拟合(Support vectors and Gaussian function fitting,SVs-GFF)的老化预测方法.首先,提取云服务器老化数据的统计特征指标,并采用支持向量回归(Support vector regression,SVR)对统计特征指标进行数据稀疏化处理,得到支持向量(Support vectors,SVs)序列数据;然后,建立基于密度聚类的高斯函数拟合(Gaussian function fitting,GFF)模型,对不同核函数下的支持向量序列数据进行老化曲线拟合,并采用Fréchet距离优化算法选取最优老化曲线;最后,基于最优老化曲线,评估系统到达老化阈值前的RUL,以预测系统何时发生老化.在OpenStack云服务器4个老化数据集上的实验结果表明,基于RUL和SVs-GFF的云服务器老化预测方法与传统预测方法相比,具有更高的预测精度和更快的收敛速度.