A low-temperature superconducting quantum interference device(low-Tc SQUID)can improve the depth of exploration.However,a low-Tc SQUID may lose its lock owing to oscillations in the current or the occurrence of spikes...A low-temperature superconducting quantum interference device(low-Tc SQUID)can improve the depth of exploration.However,a low-Tc SQUID may lose its lock owing to oscillations in the current or the occurrence of spikes when the transmitter is switched off.If a low-Tc SQUID loses its lock,it becomes impossible for the low-Tc SQUID TEM system to function normally and stably for a long period of time.This hinders the practical use of the system.In field experiments,the transmitting current is accurately measured,the voltage overshoot and current spike data are recorded,and the gradient of the primary magnetic field at the center of the transmitting loop is calculated.After analyzing the results of field experiments,it was found that when the gradient of the primary magnetic field far exceeds the slew rate of a low-Tc SQUID,the low-Tc SQUID loses its lock.Based on the mechanisms of the transmitting oscillation,an RC serial and multi-parallel capacity snubber circuit used to suppress such oscillation is proposed.The results of simulation and field experiments show that,when using a 100 m×100 m transmitting loop,the gradient of the primary magnetic field is suppressed from 101.4 to 2.4 mT/s with a transmitting current of 40 A,and from 29.6 to 1.4 mT/s with a transmitting current of 20 A.Therefore,it can be concluded that the gradient of the primary magnetic field is below the slew rate of a low-Tc SQUID after adopting the proposed RC serial and multi-parallel capacity snubber circuit.In conclusion,the technique proposed in this paper solves the problem of a lost lock of a low-Tc SQUID,ensuring that the low-Tc SQUID TEM system functions stably for a long period of time,and providing technical assurance for ground TEM exploration at an additional depth.展开更多
建立GEVSG并网有功-功角的动态等效电路模型,从电路能量流动的角度揭示GEVSG在不同扰动下存在有功振荡的原因,提出一种基于能量重构机理的GEVSG有功振荡阻尼策略,并给出基于二阶等效降阶控制模型的参数设计方法。搭建100 kVA GEVSG并网...建立GEVSG并网有功-功角的动态等效电路模型,从电路能量流动的角度揭示GEVSG在不同扰动下存在有功振荡的原因,提出一种基于能量重构机理的GEVSG有功振荡阻尼策略,并给出基于二阶等效降阶控制模型的参数设计方法。搭建100 kVA GEVSG并网系统的Matlab仿真模型与实验测试平台,并利用仿真与实验对比结果共同验证了所述控制方法的可行性与有效性。展开更多
To solve the flight safety problem caused by nonlinear instabilities(category II pilot induced oscillations, PIOs) of the closed-loop pilot-vehicle system with rate-limiting actuator, the antiwindup(AW) compensati...To solve the flight safety problem caused by nonlinear instabilities(category II pilot induced oscillations, PIOs) of the closed-loop pilot-vehicle system with rate-limiting actuator, the antiwindup(AW) compensation method to avoid category II PIOs is investigated. Firstly, the AW compensation method originally used for controlling input magnitude limited system is introduced, then this method is extended for controlling input rate-limiting system through a circle criterion theorem. Secondly, the establishment of the AW compensator is transformed into the solving of linear matrix inequalities. Finally, an AW compensator establishment algorithm for the closed-loop pilot-vehicle system with the rate-limiting actuator is obtained. The effectiveness of the AW compensation method to avoid category II PIOs is validated by time-domain simulations,and compared with rate-limited feedback(RLF) command rate compensation method. The results show that the AW compensation method can effectively suppress category II PIOs and maintain the nominal performance when the closed-loop pilot-vehicle system is normal. Unlike the command rate compensator which works upon system uninterruptedly, the AW compensation method affects the closed-loop pilot-vehicle system only when the rate-limiting of actuator is activated, so it is a novel PIO avoidance method.展开更多
基金Project(XDB 0420200)supported by Strategy Priority Research Program(B)of China
文摘A low-temperature superconducting quantum interference device(low-Tc SQUID)can improve the depth of exploration.However,a low-Tc SQUID may lose its lock owing to oscillations in the current or the occurrence of spikes when the transmitter is switched off.If a low-Tc SQUID loses its lock,it becomes impossible for the low-Tc SQUID TEM system to function normally and stably for a long period of time.This hinders the practical use of the system.In field experiments,the transmitting current is accurately measured,the voltage overshoot and current spike data are recorded,and the gradient of the primary magnetic field at the center of the transmitting loop is calculated.After analyzing the results of field experiments,it was found that when the gradient of the primary magnetic field far exceeds the slew rate of a low-Tc SQUID,the low-Tc SQUID loses its lock.Based on the mechanisms of the transmitting oscillation,an RC serial and multi-parallel capacity snubber circuit used to suppress such oscillation is proposed.The results of simulation and field experiments show that,when using a 100 m×100 m transmitting loop,the gradient of the primary magnetic field is suppressed from 101.4 to 2.4 mT/s with a transmitting current of 40 A,and from 29.6 to 1.4 mT/s with a transmitting current of 20 A.Therefore,it can be concluded that the gradient of the primary magnetic field is below the slew rate of a low-Tc SQUID after adopting the proposed RC serial and multi-parallel capacity snubber circuit.In conclusion,the technique proposed in this paper solves the problem of a lost lock of a low-Tc SQUID,ensuring that the low-Tc SQUID TEM system functions stably for a long period of time,and providing technical assurance for ground TEM exploration at an additional depth.
文摘建立GEVSG并网有功-功角的动态等效电路模型,从电路能量流动的角度揭示GEVSG在不同扰动下存在有功振荡的原因,提出一种基于能量重构机理的GEVSG有功振荡阻尼策略,并给出基于二阶等效降阶控制模型的参数设计方法。搭建100 kVA GEVSG并网系统的Matlab仿真模型与实验测试平台,并利用仿真与实验对比结果共同验证了所述控制方法的可行性与有效性。
基金supported by the National Basic Research Program(973Program)(2015CB755805)the National Natural Science Foundation of China(61374145)
文摘To solve the flight safety problem caused by nonlinear instabilities(category II pilot induced oscillations, PIOs) of the closed-loop pilot-vehicle system with rate-limiting actuator, the antiwindup(AW) compensation method to avoid category II PIOs is investigated. Firstly, the AW compensation method originally used for controlling input magnitude limited system is introduced, then this method is extended for controlling input rate-limiting system through a circle criterion theorem. Secondly, the establishment of the AW compensator is transformed into the solving of linear matrix inequalities. Finally, an AW compensator establishment algorithm for the closed-loop pilot-vehicle system with the rate-limiting actuator is obtained. The effectiveness of the AW compensation method to avoid category II PIOs is validated by time-domain simulations,and compared with rate-limited feedback(RLF) command rate compensation method. The results show that the AW compensation method can effectively suppress category II PIOs and maintain the nominal performance when the closed-loop pilot-vehicle system is normal. Unlike the command rate compensator which works upon system uninterruptedly, the AW compensation method affects the closed-loop pilot-vehicle system only when the rate-limiting of actuator is activated, so it is a novel PIO avoidance method.