处于改建阶段的智能变电站采样模式复杂,继电保护装置难以发现采样回路轻微异常,导致回路隐患暴露时间严重滞后。针对上述问题,分析改建时期智能变电站的采样模式和二次设备配置情况,提出基于同源录波数据比对的继电保护采样回路异常检...处于改建阶段的智能变电站采样模式复杂,继电保护装置难以发现采样回路轻微异常,导致回路隐患暴露时间严重滞后。针对上述问题,分析改建时期智能变电站的采样模式和二次设备配置情况,提出基于同源录波数据比对的继电保护采样回路异常检测方法。首先,利用双向编码器表征(bidirectional encoder representations from transformers,BERT)语言模型与余弦相似度算法,实现同源录波数据的通道匹配。然后,利用重采样技术和曼哈顿距离完成波形的采样频率统一与时域对齐。最后,基于动态时间规整(dynamic time warping,DTW)算法提出改进算法,并结合采样点偏移量共同设置采样回路的异常判据。算例分析表明,该方法可以完成录波数据的同源通道匹配,实现波形的一致性对齐,并且相比于传统DTW算法,改进DTW算法对异常状态识别的灵敏性和准确性更高。根据异常判据能够有效检测继电保护采样回路的异常状态,确保了智能变电站的安全可靠运行。展开更多
针对印刷电路板(printed circuit board,PCB)缺陷检测过程中,因包含丰富的小目标缺陷,易出现漏检、误检现象,提出一种基于改进增强金字塔实时检测变换器(enhance pyramid real time detection transformer,EP-RTDETR)小目标PCB表面缺陷...针对印刷电路板(printed circuit board,PCB)缺陷检测过程中,因包含丰富的小目标缺陷,易出现漏检、误检现象,提出一种基于改进增强金字塔实时检测变换器(enhance pyramid real time detection transformer,EP-RTDETR)小目标PCB表面缺陷检测算法。首先,使用CSPDarknet替代原始骨干网络,以增强模型的特征提取能力;其次,设空间移动卷积门控线性单元(spatial moving point convolutional gated linear unit,SMPCGLU)模块改造C2f中的Bottleneck,增强了特征的门控调制能力和空间自适应性;再次,引入可学习位置编码,改进尺度交互机制,增强对不同位置信息的响应能力;然后,基于跨尺度特征融合模块(cross-scale feature-fusion module,CCFM)模块设计小目标增强金字塔结构(small object enhance pyramid,SOEP),增强的特征层和精细的特征融合使模型能够更准确地定位和识别小目标;最后,设计MPDIoU(minimum point distance-based intersection over union)+NWD(normalized wasserstein distance)loss,在加快模型收敛速度的同时更加关注小目标缺陷,回归结果更加准确。试验结果表明,相较于基准模型,准确率P提高了4.6%,召回率R提高了5.1%,平均精度均值mAP50提高了4.6%,参数量减少了16.38 M,浮点数减少了48.3,FPS提高了8.51 s,能够更好地进行小目标PCB表面缺陷检测。展开更多
文摘处于改建阶段的智能变电站采样模式复杂,继电保护装置难以发现采样回路轻微异常,导致回路隐患暴露时间严重滞后。针对上述问题,分析改建时期智能变电站的采样模式和二次设备配置情况,提出基于同源录波数据比对的继电保护采样回路异常检测方法。首先,利用双向编码器表征(bidirectional encoder representations from transformers,BERT)语言模型与余弦相似度算法,实现同源录波数据的通道匹配。然后,利用重采样技术和曼哈顿距离完成波形的采样频率统一与时域对齐。最后,基于动态时间规整(dynamic time warping,DTW)算法提出改进算法,并结合采样点偏移量共同设置采样回路的异常判据。算例分析表明,该方法可以完成录波数据的同源通道匹配,实现波形的一致性对齐,并且相比于传统DTW算法,改进DTW算法对异常状态识别的灵敏性和准确性更高。根据异常判据能够有效检测继电保护采样回路的异常状态,确保了智能变电站的安全可靠运行。
文摘针对印刷电路板(printed circuit board,PCB)缺陷检测过程中,因包含丰富的小目标缺陷,易出现漏检、误检现象,提出一种基于改进增强金字塔实时检测变换器(enhance pyramid real time detection transformer,EP-RTDETR)小目标PCB表面缺陷检测算法。首先,使用CSPDarknet替代原始骨干网络,以增强模型的特征提取能力;其次,设空间移动卷积门控线性单元(spatial moving point convolutional gated linear unit,SMPCGLU)模块改造C2f中的Bottleneck,增强了特征的门控调制能力和空间自适应性;再次,引入可学习位置编码,改进尺度交互机制,增强对不同位置信息的响应能力;然后,基于跨尺度特征融合模块(cross-scale feature-fusion module,CCFM)模块设计小目标增强金字塔结构(small object enhance pyramid,SOEP),增强的特征层和精细的特征融合使模型能够更准确地定位和识别小目标;最后,设计MPDIoU(minimum point distance-based intersection over union)+NWD(normalized wasserstein distance)loss,在加快模型收敛速度的同时更加关注小目标缺陷,回归结果更加准确。试验结果表明,相较于基准模型,准确率P提高了4.6%,召回率R提高了5.1%,平均精度均值mAP50提高了4.6%,参数量减少了16.38 M,浮点数减少了48.3,FPS提高了8.51 s,能够更好地进行小目标PCB表面缺陷检测。