Various incorporation of Au in pyrite and its effects on the geometrical structure,electronic structure and flotability of pyrite were theoretically investigated and fully discussed by performing density functional th...Various incorporation of Au in pyrite and its effects on the geometrical structure,electronic structure and flotability of pyrite were theoretically investigated and fully discussed by performing density functional theory(DFT).The calculated incorporation energy shows that gold would most likely exist in pyrite via incorporating into interstitial lattice sites in the absence of As impurity.As a result of incorporated Au,the covalence levels of the S—Fe and S—S bonds are changed,and the tonicity of Au—S bonds and antibonding of Au—Fe bonds are found to form in the pyrite,which would change the natural flotability of pyrite.The Au impurity energy levels are introduced into the energy band and result in the transformation of pyrite semiconductivity type.The calculated band-gap value suggests that the incorporated Au significantly decreases pyrite semiconductivity level,which enhances the formation and the adsorption stability of dixanthogen during pyrite flotation.The DOS results reveal that the stability and depression difficulty level of pyrites increases in the following order:Fe_(32)S_(63)As<Fe_(32)S_(64)<Fe_(32)S_(63)As Au<Fe_(32)S_(64)Au.展开更多
Structural and electronic properties of Pb_(n)Ag_(n)(n=2–12)clusters were investigated by density functional theory with generalized gradient approximation at BLYP level in DMol3 program package.The optimized bimetal...Structural and electronic properties of Pb_(n)Ag_(n)(n=2–12)clusters were investigated by density functional theory with generalized gradient approximation at BLYP level in DMol3 program package.The optimized bimetallic Pb_(n)Ag_(n)(n=2–12)clusters were viewed as the initial structures,then,those were calculated by ab initio molecular dynamics(AIMD)to search possible global minimum energy structures of Pb_(n)Ag_(n)clusters,finally,the ground state structures of Pb_(n)Ag_(n)(n=2–12)clusters were achieved.According to the structural evolution of lowest energy structures,Ag atoms prefer gather in the central sites while Pb atoms prefer external positions in Pb_(n)Ag_(n)(n=2–12)clusters,which is in excellent agreement with experimental results from literature and the application in metallurgy.The average binding energies,HOMO-LUMO gaps,vertical ionization potentials,vertical electron affinities,chemical hardnessη,HOMO orbits,LUMO orbits and density of states of Pb_(n)Ag_(n)(n=2–12)clusters were calculated.The results indicate that the values of HOMO-LUMO gaps,vertical ionization potentials,vertical electron affinities and chemical hardnessηshow obvious odd-even oscillations when n≤5,Pb_(n)Ag_(n)(n=2–12)clusters become less chemically stable and show insulator-to-metal transition with the variation of cluster size n,Pb_(n)Ag_(n)(n≥9)cluster are good candidates to study the properties of PbAg alloys.Those can be well explained by the density of states(DOS)distributions of Pb atoms and Ag atoms between–0.5 Ha and 0.25 Ha in Pb_(n)Ag_(n)(n=2–12)clusters.展开更多
Electronic structures of monoclinic and hexagonal pyrrhotite were studied using density functional theory method,together with their flotation behavior. The main contribution of monoclinic pyrrhotite is mainly from Fe...Electronic structures of monoclinic and hexagonal pyrrhotite were studied using density functional theory method,together with their flotation behavior. The main contribution of monoclinic pyrrhotite is mainly from Fe 3d, while that of hexagonal pyrrhotite is from Fe 3d, Fe 3p and S 3s. The hexagonal pyrrhotite is more reactive than monoclinic pyrrhotite because of large density of states near the Fermi level. The hexagonal pyrrhotite shows antiferromagnetism. S—Fe bonds mainly exist in monoclinic pyrrhotite as the covalent bonds, while hexagonal pyrrhotite has no covalency. The main contributions of higest occupied molecular orbital(HOMO) and lowest unoccupied molecular obital(LUMO) for monoclinic pyrrhotite come from S and Fe. The main contribution of HOMO for hexagonal pyrrhotite comes from Fe, while that of LUMO comes from S. The coefficient of Fe atom is much larger than that of S atom of HOMO for hexagonal pyrrhotite, which contributes to the adsorption of Ca OH+ on the surface of hexagonal pyrrhotite when there is lime. As a result, lime has the inhibitory effect on the floatation of hexagonal pyrrhotite and the coefficient of Fe is very close to that of S for monoclinic pyrrhotite. Therefore, the existence of S prevents the adsorption of Ca OH+on the surface of monoclinic pyrrhotite, which leads to less inhibitory effect on the flotation of monoclinic pyrrhotite.展开更多
The structures, infrared spectra and cation stability of seven 5,5′-azotetrazolate nonmetallic salts are investigated by using B3LYP method with 6-311+G (d) basis set. The salts are guanidinium (GZT), aminoguanidiniu...The structures, infrared spectra and cation stability of seven 5,5′-azotetrazolate nonmetallic salts are investigated by using B3LYP method with 6-311+G (d) basis set. The salts are guanidinium (GZT), aminoguanidinium (AGZT), diaminoguanidinium (DAGZT), triaminoguanidinium (TAGZT), azidoformamidinium (AFZT), ammonium (AZT), and hydrazinium (HZT), respectively. The calculated results indicate that the carbon and nitrogen atoms of the cations in seven nonmetallic salts are characterized to be sp2 hybrid atoms, and the ranges of characteristic absorption peaks in IR spectra of the seven nonmetallic salts are approximative consistent. All their cations are stable and their stabilities decrease with the increase in their nitrogen contents.展开更多
基金Projects(51504109,51504107)supported by the National Natural Science Foundation of China
文摘Various incorporation of Au in pyrite and its effects on the geometrical structure,electronic structure and flotability of pyrite were theoretically investigated and fully discussed by performing density functional theory(DFT).The calculated incorporation energy shows that gold would most likely exist in pyrite via incorporating into interstitial lattice sites in the absence of As impurity.As a result of incorporated Au,the covalence levels of the S—Fe and S—S bonds are changed,and the tonicity of Au—S bonds and antibonding of Au—Fe bonds are found to form in the pyrite,which would change the natural flotability of pyrite.The Au impurity energy levels are introduced into the energy band and result in the transformation of pyrite semiconductivity type.The calculated band-gap value suggests that the incorporated Au significantly decreases pyrite semiconductivity level,which enhances the formation and the adsorption stability of dixanthogen during pyrite flotation.The DOS results reveal that the stability and depression difficulty level of pyrites increases in the following order:Fe_(32)S_(63)As<Fe_(32)S_(64)<Fe_(32)S_(63)As Au<Fe_(32)S_(64)Au.
基金Project(51664032)supported by the Regional Foundation of the National Natural Science Foundation of ChinaProject(51474116)supported by the General Program of the National Natural Science Foundation of China+5 种基金Project(U1502271)supported by the Joint Foundation of the NSFC-Yunnan Province,ChinaProject(2014HA003)supported by the Cultivating Plan Program for the Leader in Science and Technology of Yunnan Province,ChinaProject(2014RA4018)supported by the Program for Nonferrous Metals Vacuum Metallurgy Innovation Team of Ministry of Science and Technology,ChinaProject(2016YFC0400404)supported by the National Key Research and Development Program of ChinaProject(51504115)supported by the Youth Program of National Natural Science Foundation of ChinaProject(IRT_17R48)supported by the Program for Innovative Research Team in University of Ministry of Education of China
文摘Structural and electronic properties of Pb_(n)Ag_(n)(n=2–12)clusters were investigated by density functional theory with generalized gradient approximation at BLYP level in DMol3 program package.The optimized bimetallic Pb_(n)Ag_(n)(n=2–12)clusters were viewed as the initial structures,then,those were calculated by ab initio molecular dynamics(AIMD)to search possible global minimum energy structures of Pb_(n)Ag_(n)clusters,finally,the ground state structures of Pb_(n)Ag_(n)(n=2–12)clusters were achieved.According to the structural evolution of lowest energy structures,Ag atoms prefer gather in the central sites while Pb atoms prefer external positions in Pb_(n)Ag_(n)(n=2–12)clusters,which is in excellent agreement with experimental results from literature and the application in metallurgy.The average binding energies,HOMO-LUMO gaps,vertical ionization potentials,vertical electron affinities,chemical hardnessη,HOMO orbits,LUMO orbits and density of states of Pb_(n)Ag_(n)(n=2–12)clusters were calculated.The results indicate that the values of HOMO-LUMO gaps,vertical ionization potentials,vertical electron affinities and chemical hardnessηshow obvious odd-even oscillations when n≤5,Pb_(n)Ag_(n)(n=2–12)clusters become less chemically stable and show insulator-to-metal transition with the variation of cluster size n,Pb_(n)Ag_(n)(n≥9)cluster are good candidates to study the properties of PbAg alloys.Those can be well explained by the density of states(DOS)distributions of Pb atoms and Ag atoms between–0.5 Ha and 0.25 Ha in Pb_(n)Ag_(n)(n=2–12)clusters.
基金Project supported by the Open Foundation of Guangxi Key Laboratory for Advanced Materials and Manufacturing Technology,China
文摘Electronic structures of monoclinic and hexagonal pyrrhotite were studied using density functional theory method,together with their flotation behavior. The main contribution of monoclinic pyrrhotite is mainly from Fe 3d, while that of hexagonal pyrrhotite is from Fe 3d, Fe 3p and S 3s. The hexagonal pyrrhotite is more reactive than monoclinic pyrrhotite because of large density of states near the Fermi level. The hexagonal pyrrhotite shows antiferromagnetism. S—Fe bonds mainly exist in monoclinic pyrrhotite as the covalent bonds, while hexagonal pyrrhotite has no covalency. The main contributions of higest occupied molecular orbital(HOMO) and lowest unoccupied molecular obital(LUMO) for monoclinic pyrrhotite come from S and Fe. The main contribution of HOMO for hexagonal pyrrhotite comes from Fe, while that of LUMO comes from S. The coefficient of Fe atom is much larger than that of S atom of HOMO for hexagonal pyrrhotite, which contributes to the adsorption of Ca OH+ on the surface of hexagonal pyrrhotite when there is lime. As a result, lime has the inhibitory effect on the floatation of hexagonal pyrrhotite and the coefficient of Fe is very close to that of S for monoclinic pyrrhotite. Therefore, the existence of S prevents the adsorption of Ca OH+on the surface of monoclinic pyrrhotite, which leads to less inhibitory effect on the flotation of monoclinic pyrrhotite.
文摘The structures, infrared spectra and cation stability of seven 5,5′-azotetrazolate nonmetallic salts are investigated by using B3LYP method with 6-311+G (d) basis set. The salts are guanidinium (GZT), aminoguanidinium (AGZT), diaminoguanidinium (DAGZT), triaminoguanidinium (TAGZT), azidoformamidinium (AFZT), ammonium (AZT), and hydrazinium (HZT), respectively. The calculated results indicate that the carbon and nitrogen atoms of the cations in seven nonmetallic salts are characterized to be sp2 hybrid atoms, and the ranges of characteristic absorption peaks in IR spectra of the seven nonmetallic salts are approximative consistent. All their cations are stable and their stabilities decrease with the increase in their nitrogen contents.