To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to ...To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to operate in different measurement/feature spaces to make the most of diverse classification information. The weights assigned to each output of a base classifier are estimated by the separability of training sample sets in relevant feature space. For this purpose, some decision tables (DTs) are established in terms of the diverse feature sets. And then the uncertainty measures of the separability are induced, in the form of mass functions in Dempster-Shafer theory (DST), from each DTs based on generalized rough set model. From the mass functions, all the weights are calculated by a modified heuristic fusion function and assigned dynamically to each classifier varying with its output. The comparison experiment is performed on the hyperspectral remote sensing images. And the experimental results show that the performance of the classification can be improved by using the proposed method compared with the plurality voting (PV).展开更多
It is of great significance to rapidly detect targets in large-field remote sensing images,with limited computation resources.Employing relative achievements of visual attention in perception psychology,this paper pro...It is of great significance to rapidly detect targets in large-field remote sensing images,with limited computation resources.Employing relative achievements of visual attention in perception psychology,this paper proposes a hierarchical attention based model for target detection.Specifically,at the preattention stage,before getting salient regions,a fast computational approach is applied to build a saliency map.After that,the focus of attention(FOA) can be quickly obtained to indicate the salient objects.Then,at the attention stage,under the FOA guidance,the high-level visual features of the region of interest are extracted in parallel.Finally,at the post-attention stage,by integrating these parallel and independent visual attributes,a decision-template based classifier fusion strategy is proposed to discriminate the task-related targets from the other extracted salient objects.For comparison,experiments on ship detection are done for validating the effectiveness and feasibility of the proposed model.展开更多
基金This project was supported by the National Basic Research Programof China (2001CB309403)
文摘To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to operate in different measurement/feature spaces to make the most of diverse classification information. The weights assigned to each output of a base classifier are estimated by the separability of training sample sets in relevant feature space. For this purpose, some decision tables (DTs) are established in terms of the diverse feature sets. And then the uncertainty measures of the separability are induced, in the form of mass functions in Dempster-Shafer theory (DST), from each DTs based on generalized rough set model. From the mass functions, all the weights are calculated by a modified heuristic fusion function and assigned dynamically to each classifier varying with its output. The comparison experiment is performed on the hyperspectral remote sensing images. And the experimental results show that the performance of the classification can be improved by using the proposed method compared with the plurality voting (PV).
基金supported by the National Natural Science Foundation of China (40871157)
文摘It is of great significance to rapidly detect targets in large-field remote sensing images,with limited computation resources.Employing relative achievements of visual attention in perception psychology,this paper proposes a hierarchical attention based model for target detection.Specifically,at the preattention stage,before getting salient regions,a fast computational approach is applied to build a saliency map.After that,the focus of attention(FOA) can be quickly obtained to indicate the salient objects.Then,at the attention stage,under the FOA guidance,the high-level visual features of the region of interest are extracted in parallel.Finally,at the post-attention stage,by integrating these parallel and independent visual attributes,a decision-template based classifier fusion strategy is proposed to discriminate the task-related targets from the other extracted salient objects.For comparison,experiments on ship detection are done for validating the effectiveness and feasibility of the proposed model.