The rock mass in nature is in most cases anisotropic,while the existing classifications are mostly developed with the assumption of isotropic conditions that not always meet the engineering requirements.In this study,...The rock mass in nature is in most cases anisotropic,while the existing classifications are mostly developed with the assumption of isotropic conditions that not always meet the engineering requirements.In this study,an anisotropic system based on China National Standard of BQ,named as A-BQ,is developed to address the classification of anisotropic rock mass incorporating the anisotropy degree as well as the quality of rock mass.Two series of basic rating factors are incorporated including inherent anisotropy and structure anisotropy.The anisotropy degree of rock mass is characterized by the ratio of maximum to minimum quality score and adjusted by the confining stress.The quality score of rock mass is determined by the key factors of anisotropic structure occurrence and the correction factors of stress state and groundwater condition.The quality of rock mass is characterized by a quality score and classified in five grades.The assessment of stability status and probable failure modes are also suggested for tunnel and slope engineering for different quality grades.Finally,two cases of tunnel and slope are presented to illustrate the application of the developed classification system into the rock masses under varied stress state.展开更多
Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services...Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services is influenced by species diversity,tree health,and the distribution and the composition of trees.Traditionally,data on urban trees has been collected through field surveys and manual interpretation of remote sensing images.In this study,we evaluated the effectiveness of multispectral airborne laser scanning(ALS)data in classifying 24 common urban roadside tree species in Espoo,Finland.Tree crown structure information,intensity features,and spectral data were used for classification.Eight different machine learning algorithms were tested,with the extra trees(ET)algorithm performing the best,achieving an overall accuracy of 71.7%using multispectral LiDAR data.This result highlights that integrating structural and spectral information within a single framework can improve the classification accuracy.Future research will focus on identifying the most important features for species classification and developing algorithms with greater efficiency and accuracy.展开更多
In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This...In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This method combines two core modules:a simple parameter-free self-attention and cross-attention.By analyzing the self-correlation and cross-correlation between support images and query images,it achieves effective classification of infrared aircraft under few-shot conditions.The proposed cross-correlation network integrates these two modules and is trained in an end-to-end manner.The simple parameter-free self-attention is responsible for extracting the internal structure of the image while the cross-attention can calculate the cross-correlation between images further extracting and fusing the features between images.Compared with existing few-shot infrared target classification models,this model focuses on the geometric structure and thermal texture information of infrared images by modeling the semantic relevance between the features of the support set and query set,thus better attending to the target objects.Experimental results show that this method outperforms existing infrared aircraft classification methods in various classification tasks,with the highest classification accuracy improvement exceeding 3%.In addition,ablation experiments and comparative experiments also prove the effectiveness of the method.展开更多
近日,郑州大学网络空间安全学院在医学图像处理方向取得进展,相关研究成果以题为“PointFormer:Keypoint-Guided Transformer for Simultaneous Nuclei Segmentation and Classification in Multi-Tissue Histology Images”的论文在线...近日,郑州大学网络空间安全学院在医学图像处理方向取得进展,相关研究成果以题为“PointFormer:Keypoint-Guided Transformer for Simultaneous Nuclei Segmentation and Classification in Multi-Tissue Histology Images”的论文在线发表在国际权威期刊《IEEE Transactions on Image Processing》(中科院一区TOP,CCF-A类期刊,IF=10.8)和以题为“SimCMC:A Simple Compact Multiview Contrastive Framework for Self-supervised Early Alzheimer’s Disease Diagnosis”的论文在线发表在国际权威期刊《IEEE Transactions on Instrumentation and Measurement》(中科院二区TOP,IF=5.6)。展开更多
With the popularization of social media,public opi-nion information on emergencies spreads rapidly on the Internet,the impact of negative public opinions on an event has become more significant.Based on the organizati...With the popularization of social media,public opi-nion information on emergencies spreads rapidly on the Internet,the impact of negative public opinions on an event has become more significant.Based on the organizational form of public opinion information,the knowledge graph is used to construct the knowledge base of public opinion risk cases on the emer-gency network.The emotion recognition model of negative pub-lic opinion information based on the bi-directional long short-term memory(BiLSTM)network is studied in the model layer design,and a linear discriminant analysis(LDA)topic extraction method combined with association rules is proposed to extract and mine the semantics of negative public opinion topics to real-ize further in-depth analysis of information topics.Focusing on public health emergencies,knowledge acquisition and knowl-edge processing of public opinion information are conducted,and the experimental results show that the knowledge graph framework based on the construction can facilitate in-depth theme evolution analysis of public opinion events,thus demon-strating important research significance for reducing online pub-lic opinion risks.展开更多
In order to obtain better inverse synthetic aperture radar(ISAR)image,a novel structure-enhanced spatial spectrum is proposed for estimating the incoherence parameters and fusing multiband.The proposed method takes fu...In order to obtain better inverse synthetic aperture radar(ISAR)image,a novel structure-enhanced spatial spectrum is proposed for estimating the incoherence parameters and fusing multiband.The proposed method takes full advantage of the original electromagnetic scattering data and its conjugated form by combining them with the novel covariance matrices.To analyse the superiority of the modified algorithm,the mathematical expression of equivalent signal to noise ratio(SNR)is derived,which can validate our proposed algorithm theoretically.In addition,compared with the conventional matrix pencil(MP)algorithm and the conventional root-multiple signal classification(Root-MUSIC)algorithm,the proposed algorithm has better parameter estimation performance and more accurate multiband fusion results at the same SNR situations.Validity and effectiveness of the proposed algorithm is demonstrated by simulation data and real radar data.展开更多
To better complete various missions, it is necessary to plan an optimal trajectory or provide the optimal control law for the multirole missile according to the actual situation, including launch conditions and target...To better complete various missions, it is necessary to plan an optimal trajectory or provide the optimal control law for the multirole missile according to the actual situation, including launch conditions and target location. Since trajectory optimization struggles to meet real-time requirements, the emergence of data-based generation methods has become a significant focus in contemporary research. However, due to the large differences in the characteristics of the optimal control laws caused by the diversity of tasks, it is difficult to achieve good prediction results by modeling all data with one single model.Therefore, the modeling idea of the mixture of experts(MoE) is adopted. Firstly, the K-means clustering algorithm is used to partition the sample data set, and the corresponding neural network classification model is established as the gate switch of MoE. Then, the expert models, i.e., the mappings from the generation conditions to the optimal control law represented by the results of principal component analysis(PCA), are represented by Kriging models. Finally, multiple rounds of accuracy evaluation, sample supplementation, and model updating are conducted to improve the generation accuracy. The Monte Carlo simulation shows that the accuracy of the proposed model reaches 96% and the generation efficiency meets the real-time requirement.展开更多
The sharp increase of the amount of Internet Chinese text data has significantly prolonged the processing time of classification on these data.In order to solve this problem,this paper proposes and implements a parall...The sharp increase of the amount of Internet Chinese text data has significantly prolonged the processing time of classification on these data.In order to solve this problem,this paper proposes and implements a parallel naive Bayes algorithm(PNBA)for Chinese text classification based on Spark,a parallel memory computing platform for big data.This algorithm has implemented parallel operation throughout the entire training and prediction process of naive Bayes classifier mainly by adopting the programming model of resilient distributed datasets(RDD).For comparison,a PNBA based on Hadoop is also implemented.The test results show that in the same computing environment and for the same text sets,the Spark PNBA is obviously superior to the Hadoop PNBA in terms of key indicators such as speedup ratio and scalability.Therefore,Spark-based parallel algorithms can better meet the requirement of large-scale Chinese text data mining.展开更多
To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of...To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of DTSVM highly depends on its structure, to cluster the multi-classes with maximum distance between the clustering centers of the two sub-classes, genetic algorithm is introduced into the formation of decision tree, so that the most separable classes would be separated at each node of decisions tree. Numerical simulations conducted on three datasets compared with "one-against-all" and "one-against-one" demonstrate the proposed method has better performance and higher generalization ability than the two conventional methods.展开更多
In the need of some real applications, such as text categorization and image classification, the multi-label learning gradually becomes a hot research point in recent years. Much attention has been paid to the researc...In the need of some real applications, such as text categorization and image classification, the multi-label learning gradually becomes a hot research point in recent years. Much attention has been paid to the research of multi-label classification algorithms. Considering the fact that the high dimensionality of the multi-label datasets may cause the curse of dimensionality and wil hamper the classification process, a dimensionality reduction algorithm, named multi-label kernel discriminant analysis (MLKDA), is proposed to reduce the dimensionality of multi-label datasets. MLKDA, with the kernel trick, processes the multi-label integrally and realizes the nonlinear dimensionality reduction with the idea similar with linear discriminant analysis (LDA). In the classification process of multi-label data, the extreme learning machine (ELM) is an efficient algorithm in the premise of good accuracy. MLKDA, combined with ELM, shows a good performance in multi-label learning experiments with several datasets. The experiments on both static data and data stream show that MLKDA outperforms multi-label dimensionality reduction via dependence maximization (MDDM) and multi-label linear discriminant analysis (MLDA) in cases of balanced datasets and stronger correlation between tags, and ELM is also a good choice for multi-label classification.展开更多
Based on the principle of Mahalanobis distance discriminant analysis (DDA) theory, a stability classification model for mine-lane surrounding rock was established, including six indexes of discriminant factors that re...Based on the principle of Mahalanobis distance discriminant analysis (DDA) theory, a stability classification model for mine-lane surrounding rock was established, including six indexes of discriminant factors that reflect the engineering quality of surrounding rock: lane depth below surface, span of lane, ratio of directly top layer thickness to coal thickness, uniaxial comprehensive strength of surrounding rock, development degree coefficient of surrounding rock joint and range of broken surrounding rock zone. A DDA model was obtained through training 15 practical measuring samples. The re-substitution method was introduced to verify the stability of DDA model and the ratio of mis-discrimination is zero. The DDA model was used to discriminate 3 new samples and the results are identical with actual rock kind. Compared with the artificial neural network method and support vector mechanic method, the results show that this model has high prediction accuracy and can be used in practical engineering.展开更多
Based on the complex correlation between the geochemical element distribution patterns at the surface and the types of bedrock and the powerful capabilities in capturing subtle of machine learning algorithms,four mach...Based on the complex correlation between the geochemical element distribution patterns at the surface and the types of bedrock and the powerful capabilities in capturing subtle of machine learning algorithms,four machine learning algorithms,namely,decision tree(DT),random forest(RF),XGBoost(XGB),and LightGBM(LGBM),were implemented for the lithostratigraphic classification and lithostratigraphic prediction of a quaternary coverage area based on stream sediment geochemical sampling data in the Chahanwusu River of Dulan County,Qinghai Province,China.The local Moran’s I to represent the features of spatial autocorrelations,and terrain factors to represent the features of surface geological processes,were calculated as additional features.The accuracy,precision,recall,and F1 scores were chosen as the evaluation indices and Voronoi diagrams were applied for visualization.The results indicate that XGB and LGBM models both performed well.They not only obtained relatively satisfactory classification performance but also predicted lithostratigraphic types of the Quaternary coverage area that are essentially consistent with their neighborhoods which have the known types.It is feasible to classify the lithostratigraphic types through the concentrations of geochemical elements in the sediments,and the XGB and LGBM algorithms are recommended for lithostratigraphic classification.展开更多
For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to p...For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy.展开更多
Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are...Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.展开更多
On the basis of scale invariant feature transform(SIFT) descriptors,a novel kind of local invariants based on SIFT sequence scale(SIFT-SS) is proposed and applied to target classification.First of all,the merits o...On the basis of scale invariant feature transform(SIFT) descriptors,a novel kind of local invariants based on SIFT sequence scale(SIFT-SS) is proposed and applied to target classification.First of all,the merits of using an SIFT algorithm for target classification are discussed.Secondly,the scales of SIFT descriptors are sorted by descending as SIFT-SS,which is sent to a support vector machine(SVM) with radial based function(RBF) kernel in order to train SVM classifier,which will be used for achieving target classification.Experimental results indicate that the SIFT-SS algorithm is efficient for target classification and can obtain a higher recognition rate than affine moment invariants(AMI) and multi-scale auto-convolution(MSA) in some complex situations,such as the situation with the existence of noises and occlusions.Moreover,the computational time of SIFT-SS is shorter than MSA and longer than AMI.展开更多
Development of computational agent organizations or “societies” has become the domiant computing paradigm in the arena of Distributed Artificial Intelligence, and many foreseeable future applications need agent orga...Development of computational agent organizations or “societies” has become the domiant computing paradigm in the arena of Distributed Artificial Intelligence, and many foreseeable future applications need agent organizations, in which diversified agents cooperate in a distributed manner, forming teams. In such scenarios, the agents would need to know each other in order to facilitate the interactions. Moreover, agents in such an environment are not statically defined in advance but they can adaptively enter and leave an organization. This begs the question of how agents locate each other in order to cooperate in achieving organizational goals. Locating agents is a quite challenging task, especially in organizations that involve a large number of agents and where the resource avaiability is intermittent. The authors explore here an approach based on self organization map (SOM) which will serve as a clustering method in the light of the knowledge gathered about various agents. The approach begins by categorizing agents using a selected set of agent properties. These categories are used to derive various ranks and a distance matrix. The SOM algorithm uses this matrix as input to obtain clusters of agents. These clusters reduce the search space, resulting in a relatively short agent search time.展开更多
Ambiguity function (AF) is proposed to represent ultrasonic signal to resolve the preprocessing problem of different center frequencies and different arriving times among ultrasonic signals for feature extraction, a...Ambiguity function (AF) is proposed to represent ultrasonic signal to resolve the preprocessing problem of different center frequencies and different arriving times among ultrasonic signals for feature extraction, as well as offer time-frequency features for signal classification. Moreover, Karhunen-Loeve (K-L) transform is considered to extract signal features from ambiguity plane, and then the features are presented to probabilistic neural network (PNN) for signal classification. Experimental results show that ambiguity function eliminates the difference of center frequency and arriving time existing in ultrasonic signals, and ambiguity plane features extracted by K-L transform describe the signal of different classes effectively in a reduced dimensional space. Classification result suggests that the ambiguity plane features obtain better performance than the features extracted by wavelet transform (WT).展开更多
基金Projects(41702345,41825018)supported by the National Natural Science Foundation of ChinaProject(2019QZKK0904)supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP),ChinaProject(KFZD-SW-422)supported by the Key Deployment Program of the Chinese Academy of Sciences。
文摘The rock mass in nature is in most cases anisotropic,while the existing classifications are mostly developed with the assumption of isotropic conditions that not always meet the engineering requirements.In this study,an anisotropic system based on China National Standard of BQ,named as A-BQ,is developed to address the classification of anisotropic rock mass incorporating the anisotropy degree as well as the quality of rock mass.Two series of basic rating factors are incorporated including inherent anisotropy and structure anisotropy.The anisotropy degree of rock mass is characterized by the ratio of maximum to minimum quality score and adjusted by the confining stress.The quality score of rock mass is determined by the key factors of anisotropic structure occurrence and the correction factors of stress state and groundwater condition.The quality of rock mass is characterized by a quality score and classified in five grades.The assessment of stability status and probable failure modes are also suggested for tunnel and slope engineering for different quality grades.Finally,two cases of tunnel and slope are presented to illustrate the application of the developed classification system into the rock masses under varied stress state.
文摘Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services is influenced by species diversity,tree health,and the distribution and the composition of trees.Traditionally,data on urban trees has been collected through field surveys and manual interpretation of remote sensing images.In this study,we evaluated the effectiveness of multispectral airborne laser scanning(ALS)data in classifying 24 common urban roadside tree species in Espoo,Finland.Tree crown structure information,intensity features,and spectral data were used for classification.Eight different machine learning algorithms were tested,with the extra trees(ET)algorithm performing the best,achieving an overall accuracy of 71.7%using multispectral LiDAR data.This result highlights that integrating structural and spectral information within a single framework can improve the classification accuracy.Future research will focus on identifying the most important features for species classification and developing algorithms with greater efficiency and accuracy.
基金Supported by the National Pre-research Program during the 14th Five-Year Plan(514010405)。
文摘In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This method combines two core modules:a simple parameter-free self-attention and cross-attention.By analyzing the self-correlation and cross-correlation between support images and query images,it achieves effective classification of infrared aircraft under few-shot conditions.The proposed cross-correlation network integrates these two modules and is trained in an end-to-end manner.The simple parameter-free self-attention is responsible for extracting the internal structure of the image while the cross-attention can calculate the cross-correlation between images further extracting and fusing the features between images.Compared with existing few-shot infrared target classification models,this model focuses on the geometric structure and thermal texture information of infrared images by modeling the semantic relevance between the features of the support set and query set,thus better attending to the target objects.Experimental results show that this method outperforms existing infrared aircraft classification methods in various classification tasks,with the highest classification accuracy improvement exceeding 3%.In addition,ablation experiments and comparative experiments also prove the effectiveness of the method.
文摘近日,郑州大学网络空间安全学院在医学图像处理方向取得进展,相关研究成果以题为“PointFormer:Keypoint-Guided Transformer for Simultaneous Nuclei Segmentation and Classification in Multi-Tissue Histology Images”的论文在线发表在国际权威期刊《IEEE Transactions on Image Processing》(中科院一区TOP,CCF-A类期刊,IF=10.8)和以题为“SimCMC:A Simple Compact Multiview Contrastive Framework for Self-supervised Early Alzheimer’s Disease Diagnosis”的论文在线发表在国际权威期刊《IEEE Transactions on Instrumentation and Measurement》(中科院二区TOP,IF=5.6)。
基金supported by the National Social Science Foundation Major Project(22&ZD135)the National Social Science Fund National Emergency Management System Construction Research Project(20VYJ061).
文摘With the popularization of social media,public opi-nion information on emergencies spreads rapidly on the Internet,the impact of negative public opinions on an event has become more significant.Based on the organizational form of public opinion information,the knowledge graph is used to construct the knowledge base of public opinion risk cases on the emer-gency network.The emotion recognition model of negative pub-lic opinion information based on the bi-directional long short-term memory(BiLSTM)network is studied in the model layer design,and a linear discriminant analysis(LDA)topic extraction method combined with association rules is proposed to extract and mine the semantics of negative public opinion topics to real-ize further in-depth analysis of information topics.Focusing on public health emergencies,knowledge acquisition and knowl-edge processing of public opinion information are conducted,and the experimental results show that the knowledge graph framework based on the construction can facilitate in-depth theme evolution analysis of public opinion events,thus demon-strating important research significance for reducing online pub-lic opinion risks.
文摘In order to obtain better inverse synthetic aperture radar(ISAR)image,a novel structure-enhanced spatial spectrum is proposed for estimating the incoherence parameters and fusing multiband.The proposed method takes full advantage of the original electromagnetic scattering data and its conjugated form by combining them with the novel covariance matrices.To analyse the superiority of the modified algorithm,the mathematical expression of equivalent signal to noise ratio(SNR)is derived,which can validate our proposed algorithm theoretically.In addition,compared with the conventional matrix pencil(MP)algorithm and the conventional root-multiple signal classification(Root-MUSIC)algorithm,the proposed algorithm has better parameter estimation performance and more accurate multiband fusion results at the same SNR situations.Validity and effectiveness of the proposed algorithm is demonstrated by simulation data and real radar data.
基金Defense Industrial Technology Development Program (JCKY2020204B016)National Natural Science Foundation of China (92471206)。
文摘To better complete various missions, it is necessary to plan an optimal trajectory or provide the optimal control law for the multirole missile according to the actual situation, including launch conditions and target location. Since trajectory optimization struggles to meet real-time requirements, the emergence of data-based generation methods has become a significant focus in contemporary research. However, due to the large differences in the characteristics of the optimal control laws caused by the diversity of tasks, it is difficult to achieve good prediction results by modeling all data with one single model.Therefore, the modeling idea of the mixture of experts(MoE) is adopted. Firstly, the K-means clustering algorithm is used to partition the sample data set, and the corresponding neural network classification model is established as the gate switch of MoE. Then, the expert models, i.e., the mappings from the generation conditions to the optimal control law represented by the results of principal component analysis(PCA), are represented by Kriging models. Finally, multiple rounds of accuracy evaluation, sample supplementation, and model updating are conducted to improve the generation accuracy. The Monte Carlo simulation shows that the accuracy of the proposed model reaches 96% and the generation efficiency meets the real-time requirement.
基金Project(KC18071)supported by the Application Foundation Research Program of Xuzhou,ChinaProjects(2017YFC0804401,2017YFC0804409)supported by the National Key R&D Program of China
文摘The sharp increase of the amount of Internet Chinese text data has significantly prolonged the processing time of classification on these data.In order to solve this problem,this paper proposes and implements a parallel naive Bayes algorithm(PNBA)for Chinese text classification based on Spark,a parallel memory computing platform for big data.This algorithm has implemented parallel operation throughout the entire training and prediction process of naive Bayes classifier mainly by adopting the programming model of resilient distributed datasets(RDD).For comparison,a PNBA based on Hadoop is also implemented.The test results show that in the same computing environment and for the same text sets,the Spark PNBA is obviously superior to the Hadoop PNBA in terms of key indicators such as speedup ratio and scalability.Therefore,Spark-based parallel algorithms can better meet the requirement of large-scale Chinese text data mining.
基金supported by the National Natural Science Foundation of China (60604021 60874054)
文摘To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of DTSVM highly depends on its structure, to cluster the multi-classes with maximum distance between the clustering centers of the two sub-classes, genetic algorithm is introduced into the formation of decision tree, so that the most separable classes would be separated at each node of decisions tree. Numerical simulations conducted on three datasets compared with "one-against-all" and "one-against-one" demonstrate the proposed method has better performance and higher generalization ability than the two conventional methods.
基金supported by the National Natural Science Foundation of China(5110505261173163)the Liaoning Provincial Natural Science Foundation of China(201102037)
文摘In the need of some real applications, such as text categorization and image classification, the multi-label learning gradually becomes a hot research point in recent years. Much attention has been paid to the research of multi-label classification algorithms. Considering the fact that the high dimensionality of the multi-label datasets may cause the curse of dimensionality and wil hamper the classification process, a dimensionality reduction algorithm, named multi-label kernel discriminant analysis (MLKDA), is proposed to reduce the dimensionality of multi-label datasets. MLKDA, with the kernel trick, processes the multi-label integrally and realizes the nonlinear dimensionality reduction with the idea similar with linear discriminant analysis (LDA). In the classification process of multi-label data, the extreme learning machine (ELM) is an efficient algorithm in the premise of good accuracy. MLKDA, combined with ELM, shows a good performance in multi-label learning experiments with several datasets. The experiments on both static data and data stream show that MLKDA outperforms multi-label dimensionality reduction via dependence maximization (MDDM) and multi-label linear discriminant analysis (MLDA) in cases of balanced datasets and stronger correlation between tags, and ELM is also a good choice for multi-label classification.
基金Project(50490274) supported by the National Natural Science Foundation of China
文摘Based on the principle of Mahalanobis distance discriminant analysis (DDA) theory, a stability classification model for mine-lane surrounding rock was established, including six indexes of discriminant factors that reflect the engineering quality of surrounding rock: lane depth below surface, span of lane, ratio of directly top layer thickness to coal thickness, uniaxial comprehensive strength of surrounding rock, development degree coefficient of surrounding rock joint and range of broken surrounding rock zone. A DDA model was obtained through training 15 practical measuring samples. The re-substitution method was introduced to verify the stability of DDA model and the ratio of mis-discrimination is zero. The DDA model was used to discriminate 3 new samples and the results are identical with actual rock kind. Compared with the artificial neural network method and support vector mechanic method, the results show that this model has high prediction accuracy and can be used in practical engineering.
基金Projects(41772348,42072326)supported by the National Natural Science Foundation of ChinaProject(2017YFC0601503)supported by the National Key Research and Development Program,China。
文摘Based on the complex correlation between the geochemical element distribution patterns at the surface and the types of bedrock and the powerful capabilities in capturing subtle of machine learning algorithms,four machine learning algorithms,namely,decision tree(DT),random forest(RF),XGBoost(XGB),and LightGBM(LGBM),were implemented for the lithostratigraphic classification and lithostratigraphic prediction of a quaternary coverage area based on stream sediment geochemical sampling data in the Chahanwusu River of Dulan County,Qinghai Province,China.The local Moran’s I to represent the features of spatial autocorrelations,and terrain factors to represent the features of surface geological processes,were calculated as additional features.The accuracy,precision,recall,and F1 scores were chosen as the evaluation indices and Voronoi diagrams were applied for visualization.The results indicate that XGB and LGBM models both performed well.They not only obtained relatively satisfactory classification performance but also predicted lithostratigraphic types of the Quaternary coverage area that are essentially consistent with their neighborhoods which have the known types.It is feasible to classify the lithostratigraphic types through the concentrations of geochemical elements in the sediments,and the XGB and LGBM algorithms are recommended for lithostratigraphic classification.
基金supported by the National Natural Science Foundation of China(61371172)the International S&T Cooperation Program of China(2015DFR10220)+1 种基金the Ocean Engineering Project of National Key Laboratory Foundation(1213)the Fundamental Research Funds for the Central Universities(HEUCF1608)
文摘For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy.
基金Defense Advanced Research Project "the Techniques of Information Integrated Processing and Fusion" in the Eleventh Five-Year Plan (513060302).
文摘Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.
基金supported by the National High Technology Research and Development Program (863 Program) (2010AA7080302)
文摘On the basis of scale invariant feature transform(SIFT) descriptors,a novel kind of local invariants based on SIFT sequence scale(SIFT-SS) is proposed and applied to target classification.First of all,the merits of using an SIFT algorithm for target classification are discussed.Secondly,the scales of SIFT descriptors are sorted by descending as SIFT-SS,which is sent to a support vector machine(SVM) with radial based function(RBF) kernel in order to train SVM classifier,which will be used for achieving target classification.Experimental results indicate that the SIFT-SS algorithm is efficient for target classification and can obtain a higher recognition rate than affine moment invariants(AMI) and multi-scale auto-convolution(MSA) in some complex situations,such as the situation with the existence of noises and occlusions.Moreover,the computational time of SIFT-SS is shorter than MSA and longer than AMI.
文摘Development of computational agent organizations or “societies” has become the domiant computing paradigm in the arena of Distributed Artificial Intelligence, and many foreseeable future applications need agent organizations, in which diversified agents cooperate in a distributed manner, forming teams. In such scenarios, the agents would need to know each other in order to facilitate the interactions. Moreover, agents in such an environment are not statically defined in advance but they can adaptively enter and leave an organization. This begs the question of how agents locate each other in order to cooperate in achieving organizational goals. Locating agents is a quite challenging task, especially in organizations that involve a large number of agents and where the resource avaiability is intermittent. The authors explore here an approach based on self organization map (SOM) which will serve as a clustering method in the light of the knowledge gathered about various agents. The approach begins by categorizing agents using a selected set of agent properties. These categories are used to derive various ranks and a distance matrix. The SOM algorithm uses this matrix as input to obtain clusters of agents. These clusters reduce the search space, resulting in a relatively short agent search time.
文摘Ambiguity function (AF) is proposed to represent ultrasonic signal to resolve the preprocessing problem of different center frequencies and different arriving times among ultrasonic signals for feature extraction, as well as offer time-frequency features for signal classification. Moreover, Karhunen-Loeve (K-L) transform is considered to extract signal features from ambiguity plane, and then the features are presented to probabilistic neural network (PNN) for signal classification. Experimental results show that ambiguity function eliminates the difference of center frequency and arriving time existing in ultrasonic signals, and ambiguity plane features extracted by K-L transform describe the signal of different classes effectively in a reduced dimensional space. Classification result suggests that the ambiguity plane features obtain better performance than the features extracted by wavelet transform (WT).