期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Model classification rate control algorithmfor video coding
1
作者 古继兴 郑世宝 +1 位作者 王嘉 孙军 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第3期494-497,共4页
A model classification rate control method for video coding is proposed. The macro-blocks are classified according to their prediction errors, and different parameters are used in the rate-quantization and distortion-... A model classification rate control method for video coding is proposed. The macro-blocks are classified according to their prediction errors, and different parameters are used in the rate-quantization and distortion-quantization model. The different model parameters are calculated from the previous frame of the same type in the process of coding. These models are used to estimate the relations among rate, distortion and quantization of the current frame. Further steps, such as R-D optimization based quantization adjustment and smoothing of quantization of adjacent macrobloeks, are used to improve the quality. The results of the experiments prove that the technique is effective and can be realized easily. The method presented in the paper can be a good way for MPEG and H. 264 rate control. 展开更多
关键词 rate control model classification MACROBLOCK
在线阅读 下载PDF
Application of signal processing and support vector machine to transverse cracking detection in asphalt pavement 被引量:6
2
作者 YANG Qun ZHOU Shi-shi +1 位作者 WANG Ping ZHANG Jun 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第8期2451-2462,共12页
Vibration-based pavement condition(roughness and obvious anomalies)monitoring has been expanding in road engineering.However,the indistinctive transverse cracking has hardly been considered.Therefore,a vehicle-based n... Vibration-based pavement condition(roughness and obvious anomalies)monitoring has been expanding in road engineering.However,the indistinctive transverse cracking has hardly been considered.Therefore,a vehicle-based novel method is proposed for detecting the transverse cracking through signal processing techniques and support vector machine(SVM).The vibration signals of the car traveling on the transverse-cracked and the crack-free sections were subjected to signal processing in time domain,frequency domain and wavelet domain,aiming to find indices that can discriminate vibration signal between the cracked and uncracked section.These indices were used to form 8 SVM models.The model with the highest accuracy and F1-measure was preferred,consisting of features including vehicle speed,range,relative standard deviation,maximum Fourier coefficient,and wavelet coefficient.Therefore,a crack and crack-free classifier was developed.Then its feasibility was investigated by 2292 pavement sections.The detection accuracy and F1-measure are 97.25%and 85.25%,respectively.The cracking detection approach proposed in this paper and the smartphone-based detection method for IRI and other distress may form a comprehensive pavement condition survey system. 展开更多
关键词 asphalt pavement transverse crack detection vehicle vibration support vector machine classification model
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部