A model classification rate control method for video coding is proposed. The macro-blocks are classified according to their prediction errors, and different parameters are used in the rate-quantization and distortion-...A model classification rate control method for video coding is proposed. The macro-blocks are classified according to their prediction errors, and different parameters are used in the rate-quantization and distortion-quantization model. The different model parameters are calculated from the previous frame of the same type in the process of coding. These models are used to estimate the relations among rate, distortion and quantization of the current frame. Further steps, such as R-D optimization based quantization adjustment and smoothing of quantization of adjacent macrobloeks, are used to improve the quality. The results of the experiments prove that the technique is effective and can be realized easily. The method presented in the paper can be a good way for MPEG and H. 264 rate control.展开更多
Vibration-based pavement condition(roughness and obvious anomalies)monitoring has been expanding in road engineering.However,the indistinctive transverse cracking has hardly been considered.Therefore,a vehicle-based n...Vibration-based pavement condition(roughness and obvious anomalies)monitoring has been expanding in road engineering.However,the indistinctive transverse cracking has hardly been considered.Therefore,a vehicle-based novel method is proposed for detecting the transverse cracking through signal processing techniques and support vector machine(SVM).The vibration signals of the car traveling on the transverse-cracked and the crack-free sections were subjected to signal processing in time domain,frequency domain and wavelet domain,aiming to find indices that can discriminate vibration signal between the cracked and uncracked section.These indices were used to form 8 SVM models.The model with the highest accuracy and F1-measure was preferred,consisting of features including vehicle speed,range,relative standard deviation,maximum Fourier coefficient,and wavelet coefficient.Therefore,a crack and crack-free classifier was developed.Then its feasibility was investigated by 2292 pavement sections.The detection accuracy and F1-measure are 97.25%and 85.25%,respectively.The cracking detection approach proposed in this paper and the smartphone-based detection method for IRI and other distress may form a comprehensive pavement condition survey system.展开更多
基金This project was supported by the High Technology Research and Development Programof China (2002AA103087) .
文摘A model classification rate control method for video coding is proposed. The macro-blocks are classified according to their prediction errors, and different parameters are used in the rate-quantization and distortion-quantization model. The different model parameters are calculated from the previous frame of the same type in the process of coding. These models are used to estimate the relations among rate, distortion and quantization of the current frame. Further steps, such as R-D optimization based quantization adjustment and smoothing of quantization of adjacent macrobloeks, are used to improve the quality. The results of the experiments prove that the technique is effective and can be realized easily. The method presented in the paper can be a good way for MPEG and H. 264 rate control.
基金Project(51778482)supported by the National Natural Science Foundation of China。
文摘Vibration-based pavement condition(roughness and obvious anomalies)monitoring has been expanding in road engineering.However,the indistinctive transverse cracking has hardly been considered.Therefore,a vehicle-based novel method is proposed for detecting the transverse cracking through signal processing techniques and support vector machine(SVM).The vibration signals of the car traveling on the transverse-cracked and the crack-free sections were subjected to signal processing in time domain,frequency domain and wavelet domain,aiming to find indices that can discriminate vibration signal between the cracked and uncracked section.These indices were used to form 8 SVM models.The model with the highest accuracy and F1-measure was preferred,consisting of features including vehicle speed,range,relative standard deviation,maximum Fourier coefficient,and wavelet coefficient.Therefore,a crack and crack-free classifier was developed.Then its feasibility was investigated by 2292 pavement sections.The detection accuracy and F1-measure are 97.25%and 85.25%,respectively.The cracking detection approach proposed in this paper and the smartphone-based detection method for IRI and other distress may form a comprehensive pavement condition survey system.