The all traditional electrical resistance tomography (ERT) sensors have a static structure, which cannot satisfy the intelligent requirements for adaptive optimization to ERT sensors that is subject to flow pattern ch...The all traditional electrical resistance tomography (ERT) sensors have a static structure, which cannot satisfy the intelligent requirements for adaptive optimization to ERT sensors that is subject to flow pattern changes during the real-time detection of two-phase flow. In view of this problem, an adaptive ERT sensor with a dynamic structure is proposed. The electrodes of the ERT sensor are arranged in an array structure, the flow pattern recognition technique is introduced into the ERT sensor design and accordingly an ERT flow pattern recognition method based on signal sparsity is proposed. This method uses the sparse representation of the signal to express the sampling voltage of the ERT system as a sparse combination and find its sparse solution to achieve the classification of different flow patterns. With the introduction of flow identification information, the sensor has an intelligent function of adaptively and dynamically adapting the sensor structure according to the real-time flow pattern change. The experimental results show that the sensor can automatically identify four typical flow patterns: core flow, bubble flow, laminar flow and circulation flow with recognition rates of 91%, 93%, 90% and 88% respectively. For different flow patterns, the dynamically optimized sensor can significantly improve the quality of ERT image reconstruction.展开更多
This paper summarizes the research results dealing with washer and nut taxonomy and knowledge base design, making the use of fuzzy methodology. In particular, the theory of fuzzy membership functions, similarity matri...This paper summarizes the research results dealing with washer and nut taxonomy and knowledge base design, making the use of fuzzy methodology. In particular, the theory of fuzzy membership functions, similarity matrices, and the operation of fuzzy inference play important roles.A realistic set of 25 washers and nuts are employed to conduct extensive experiments and simulations.The investigation includes a complete demonstration of engineering design. The results obtained from this feasibility study are very encouraging indeed because they represent the lower bound with respect to performance, namely correctrecognition rate, of what fuzzy methodology can do. This lower bound shows high recognition rate even with noisy input patterns, robustness in terms of noise tolerance, and simplicity in hardware implementation. Possible future works are suggested in the conclusion.展开更多
基金Projects(51405381,51674188)supported by the National Natural Science Foundation of China
文摘The all traditional electrical resistance tomography (ERT) sensors have a static structure, which cannot satisfy the intelligent requirements for adaptive optimization to ERT sensors that is subject to flow pattern changes during the real-time detection of two-phase flow. In view of this problem, an adaptive ERT sensor with a dynamic structure is proposed. The electrodes of the ERT sensor are arranged in an array structure, the flow pattern recognition technique is introduced into the ERT sensor design and accordingly an ERT flow pattern recognition method based on signal sparsity is proposed. This method uses the sparse representation of the signal to express the sampling voltage of the ERT system as a sparse combination and find its sparse solution to achieve the classification of different flow patterns. With the introduction of flow identification information, the sensor has an intelligent function of adaptively and dynamically adapting the sensor structure according to the real-time flow pattern change. The experimental results show that the sensor can automatically identify four typical flow patterns: core flow, bubble flow, laminar flow and circulation flow with recognition rates of 91%, 93%, 90% and 88% respectively. For different flow patterns, the dynamically optimized sensor can significantly improve the quality of ERT image reconstruction.
文摘This paper summarizes the research results dealing with washer and nut taxonomy and knowledge base design, making the use of fuzzy methodology. In particular, the theory of fuzzy membership functions, similarity matrices, and the operation of fuzzy inference play important roles.A realistic set of 25 washers and nuts are employed to conduct extensive experiments and simulations.The investigation includes a complete demonstration of engineering design. The results obtained from this feasibility study are very encouraging indeed because they represent the lower bound with respect to performance, namely correctrecognition rate, of what fuzzy methodology can do. This lower bound shows high recognition rate even with noisy input patterns, robustness in terms of noise tolerance, and simplicity in hardware implementation. Possible future works are suggested in the conclusion.