期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于类别空间约束的弱监督卷积神经网络特征学习算法 被引量:1
1
作者 高博 《电子测量技术》 北大核心 2022年第5期94-99,共6页
传统卷积神经网络虽然具有较好的应用准确度,但是其的主要缺陷是效率低,为解决这一问题,弱监督算法被提出,现有的弱监督学习算法标记训练样本较少,效率较理想,但是仍然存在误分类率较高等不足。为了同时满足高效率和高精度的要求,本研... 传统卷积神经网络虽然具有较好的应用准确度,但是其的主要缺陷是效率低,为解决这一问题,弱监督算法被提出,现有的弱监督学习算法标记训练样本较少,效率较理想,但是仍然存在误分类率较高等不足。为了同时满足高效率和高精度的要求,本研究结合了弱监督算法和卷积神经网络,提出一种基于类别空间约束的弱监督卷积神经网络特征学习算法。首先,建立弱监督卷积神经网络特征学习算法的网络模型;其次,通过对空间加以约束,使标记样本和未标记样本建立一定的联系,从而实现特征空间聚类;最后,利用模型训练样本数据,实现基于类别空间约束的弱监督卷积神经网络特征学习算法的设计。实验结果表明,所提方法误分类率达到5%,分类耗时不超过0.4 ms,能够更好地开展特征学习。 展开更多
关键词 类别空间约束 弱监督 卷积神经网络 特征学习算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部