多目标萤火虫算法采用整体维度更新策略,常因某几维变量上优化效果不佳,导致算法收敛速度慢和寻优精度低。针对上述问题,本文提出基于决策变量分组优化的多目标萤火虫算法(multi-objective firefly algorithm with group optimization o...多目标萤火虫算法采用整体维度更新策略,常因某几维变量上优化效果不佳,导致算法收敛速度慢和寻优精度低。针对上述问题,本文提出基于决策变量分组优化的多目标萤火虫算法(multi-objective firefly algorithm with group optimization of decision variables,MOFA-GD)。引入决策变量分组机制,根据各变量对算法性能的不同影响,将整体决策变量划分成收敛性变量组和多样性变量组;设计决策变量分组优化模型,利用学习行为优化收敛性变量组,加快种群收敛速度,非均匀变异算子优化多样性变量组,避免种群过早收敛,逐渐减小的变异幅度引导种群局部开发,提升算法寻优精度;采用档案截断策略维护外部档案,精准删除拥挤个体,从而保持外部档案的多样性。实验结果表明:MOFA-GD表现出优秀的收敛速度和寻优精度,获得了均匀分布的Pareto解集。本文所提算法为求解多目标优化问题提供了一种高效且可靠的解决方案。展开更多
The learning algorithms of causal discovery mainly include score-based methods and genetic algorithms(GA).The score-based algorithms are prone to searching space explosion.Classical GA is slow to converge,and prone to...The learning algorithms of causal discovery mainly include score-based methods and genetic algorithms(GA).The score-based algorithms are prone to searching space explosion.Classical GA is slow to converge,and prone to falling into local optima.To address these issues,an improved GA with domain knowledge(IGADK)is proposed.Firstly,domain knowledge is incorporated into the learning process of causality to construct a new fitness function.Secondly,a dynamical mutation operator is introduced in the algorithm to accelerate the convergence rate.Finally,an experiment is conducted on simulation data,which compares the classical GA with IGADK with domain knowledge of varying accuracy.The IGADK can greatly reduce the number of iterations,populations,and samples required for learning,which illustrates the efficiency and effectiveness of the proposed algorithm.展开更多
To deal with the radio frequency threat posed by modern complex radar networks to aircraft,we researched the unmanned aerial vehicle(UAV)formations radar countermeasures,aiming at the solution of radar jamming resourc...To deal with the radio frequency threat posed by modern complex radar networks to aircraft,we researched the unmanned aerial vehicle(UAV)formations radar countermeasures,aiming at the solution of radar jamming resource allocation under system countermeasures.A jamming resource allocation method based on an improved firefly algorithm(FA)is proposed.Firstly,the comprehensive factors affecting the level of threat and interference efficiency of radiation source are quantified by a fuzzy comprehensive evaluation.Besides,the interference efficiency matrix and the objective function of the allocation model are determined to establish the interference resource allocation model.Finally,A mutation operator and an adaptive heuristic are integtated into the FA algorithm,which searches an interference resource allocation scheme.The simulation results show that the improved FA algorithm can compensate for the deficiencies of the FA algorithm.The improved FA algorithm provides a more scientific and reasonable decision-making plan for aircraft mission allocation and can effectively deal with the battlefield threats of the enemy radar network.Moreover,in terms of convergence accuracy and speed as well as algorithm stability,the improved FA algorithm is superior to the simulated annealing algorithm(SA),the niche genetic algorithm(NGA),the improved discrete cuckoo algorithm(IDCS),the mutant firefly algorithm(MFA),the cuckoo search and fireflies algorithm(CSFA),and the best neighbor firefly algorithm(BNFA).展开更多
针对智慧云仓货物信息量大、易出现账物不符等库存管理问题,迫切需要将无人机(unmanned aerial vehicle, UAV)和工业物联网(industrial Internet of things, IIoT)集成起来,为仓储精细化管理提供解决方案。首先,分析盘库作业数据采集与...针对智慧云仓货物信息量大、易出现账物不符等库存管理问题,迫切需要将无人机(unmanned aerial vehicle, UAV)和工业物联网(industrial Internet of things, IIoT)集成起来,为仓储精细化管理提供解决方案。首先,分析盘库作业数据采集与信息交互运行机制,以危险避障和数据采集为约束函数,考虑了UAV在加速、减速、匀速、转角等飞行条件下的能耗差异,并以能耗最低和时间最短为目标函数构造UAV盘库作业数学模型;然后,设计了差分迁移-分段变异生物地理学优化(differential migration-piecewise mutation-biogeography-based optimization, DPBBO)算法对上述模型进行优化解算;最后,进行了仿真实验验证。结果表明:DPBBO算法对解决该盘库作业问题的效果较优,可以提升库存抽检任务的时效性和库存管理的准确性。展开更多
针对传统最大似然波达方向(maximum likelihood direction of arrival,ML-DOA)估计存在计算量大、估计精度差等问题,本文提出一种采用改进帝王蝶优化算法(improved monarch butterfly optimization algorithm,IMBO)的ML-DOA估计方法。I...针对传统最大似然波达方向(maximum likelihood direction of arrival,ML-DOA)估计存在计算量大、估计精度差等问题,本文提出一种采用改进帝王蝶优化算法(improved monarch butterfly optimization algorithm,IMBO)的ML-DOA估计方法。IMBO算法通过精英反向学习策略对初始帝王蝶种群进行优化,得到适应度值较优的初始帝王蝶个体,进而能够改善帝王蝶种群的多样性;引入差分进化算法启发的变异操作以及自适应策略对帝王蝶个体的寻优方式进行改进,扩大了算法的搜索空间;引入了高斯-柯西变异算子,自适应调整变异步长,避免算法陷入局部最优。将IMBO应用于ML-DOA,实验表明,与传统的DOA估计算法相比,在不同信源数目、信噪比以及种群数量下,本文提出的算法收敛性能更好,均方根误差更低,运算量更小。展开更多
文摘多目标萤火虫算法采用整体维度更新策略,常因某几维变量上优化效果不佳,导致算法收敛速度慢和寻优精度低。针对上述问题,本文提出基于决策变量分组优化的多目标萤火虫算法(multi-objective firefly algorithm with group optimization of decision variables,MOFA-GD)。引入决策变量分组机制,根据各变量对算法性能的不同影响,将整体决策变量划分成收敛性变量组和多样性变量组;设计决策变量分组优化模型,利用学习行为优化收敛性变量组,加快种群收敛速度,非均匀变异算子优化多样性变量组,避免种群过早收敛,逐渐减小的变异幅度引导种群局部开发,提升算法寻优精度;采用档案截断策略维护外部档案,精准删除拥挤个体,从而保持外部档案的多样性。实验结果表明:MOFA-GD表现出优秀的收敛速度和寻优精度,获得了均匀分布的Pareto解集。本文所提算法为求解多目标优化问题提供了一种高效且可靠的解决方案。
基金supported by the National Social Science Fund of China(2022-SKJJ-B-084).
文摘The learning algorithms of causal discovery mainly include score-based methods and genetic algorithms(GA).The score-based algorithms are prone to searching space explosion.Classical GA is slow to converge,and prone to falling into local optima.To address these issues,an improved GA with domain knowledge(IGADK)is proposed.Firstly,domain knowledge is incorporated into the learning process of causality to construct a new fitness function.Secondly,a dynamical mutation operator is introduced in the algorithm to accelerate the convergence rate.Finally,an experiment is conducted on simulation data,which compares the classical GA with IGADK with domain knowledge of varying accuracy.The IGADK can greatly reduce the number of iterations,populations,and samples required for learning,which illustrates the efficiency and effectiveness of the proposed algorithm.
文摘To deal with the radio frequency threat posed by modern complex radar networks to aircraft,we researched the unmanned aerial vehicle(UAV)formations radar countermeasures,aiming at the solution of radar jamming resource allocation under system countermeasures.A jamming resource allocation method based on an improved firefly algorithm(FA)is proposed.Firstly,the comprehensive factors affecting the level of threat and interference efficiency of radiation source are quantified by a fuzzy comprehensive evaluation.Besides,the interference efficiency matrix and the objective function of the allocation model are determined to establish the interference resource allocation model.Finally,A mutation operator and an adaptive heuristic are integtated into the FA algorithm,which searches an interference resource allocation scheme.The simulation results show that the improved FA algorithm can compensate for the deficiencies of the FA algorithm.The improved FA algorithm provides a more scientific and reasonable decision-making plan for aircraft mission allocation and can effectively deal with the battlefield threats of the enemy radar network.Moreover,in terms of convergence accuracy and speed as well as algorithm stability,the improved FA algorithm is superior to the simulated annealing algorithm(SA),the niche genetic algorithm(NGA),the improved discrete cuckoo algorithm(IDCS),the mutant firefly algorithm(MFA),the cuckoo search and fireflies algorithm(CSFA),and the best neighbor firefly algorithm(BNFA).
文摘针对传统最大似然波达方向(maximum likelihood direction of arrival,ML-DOA)估计存在计算量大、估计精度差等问题,本文提出一种采用改进帝王蝶优化算法(improved monarch butterfly optimization algorithm,IMBO)的ML-DOA估计方法。IMBO算法通过精英反向学习策略对初始帝王蝶种群进行优化,得到适应度值较优的初始帝王蝶个体,进而能够改善帝王蝶种群的多样性;引入差分进化算法启发的变异操作以及自适应策略对帝王蝶个体的寻优方式进行改进,扩大了算法的搜索空间;引入了高斯-柯西变异算子,自适应调整变异步长,避免算法陷入局部最优。将IMBO应用于ML-DOA,实验表明,与传统的DOA估计算法相比,在不同信源数目、信噪比以及种群数量下,本文提出的算法收敛性能更好,均方根误差更低,运算量更小。