The effect of second-harmonic generation (SHG) by primary (fundamental) circumferential guided wave (CGW) propagation is investigated from a numerical standpoint. To enable that the second harmonic of the primar...The effect of second-harmonic generation (SHG) by primary (fundamental) circumferential guided wave (CGW) propagation is investigated from a numerical standpoint. To enable that the second harmonic of the primary CGW mode can accumulate along the circumferential direction, an appropriate mode pair of primary and double frequency CGWs is chosen. Finite element simulations and evaluations of nonlinear CGW propagation are analyzed for the selected CGW mode pair. The numerical simulations performed directly demonstrate that the response of SHG is completely generated by the desired primary CGW mode that satisfies the condition of phase velocity matching at a specific driving frequency, and that the second harmonic of the primary CGW mode does have a cumulative effect with circumferential angles. The numerical perspective obtained yields an insight into the complicated physical process of SHG of primary CGW propagation unavailable previously.展开更多
The experimental observation of cumulative second-harmonic generation of the primary circumferential guided wave propagation is reported. A pair of wedge transducers is used to generate the primary circumferential gui...The experimental observation of cumulative second-harmonic generation of the primary circumferential guided wave propagation is reported. A pair of wedge transducers is used to generate the primary circumferential guided wave desired and to detect its fundamental-frequency and second-harmonic amplitudes on the outside surface of the circular tube. The amplitudes of the fundamental waves and the second harmonics of the circumferential guided wave propagation are measured for different separations between the two wedge transducers. At the driving frequency where the primary and the double-frequency circumferential guided waves have the same linear phase velocities, the clear second-harmonic signals can be observed. The quantitative relationships between the second-harmonic amplitudes and circumferential angle are analyzed. It is experimentally verified that the second harmonics of primary circumferential guided waves do have a cumulative growth effect with the circumferential angle.展开更多
A theoretical model to analyze the nonlinear circumferential guided wave(CGW) propagation in a composite circular tube(CCT) is established. The response features of nonlinear CGWs to early damage [denoted by variation...A theoretical model to analyze the nonlinear circumferential guided wave(CGW) propagation in a composite circular tube(CCT) is established. The response features of nonlinear CGWs to early damage [denoted by variations in third-order elastic constants(TOECs)] in an inner layer of CCT are investigated. On the basis of the modal expansion approach, the second-harmonic field of primary CGW propagation can be assumed to be a linear sum of a series of double-frequency CGW(DFCGW) modes. The quantitative relationship of DFCGW mode versus the relative changes in the inner layer TOECs is then investigated. It is found that the changes in the inner layer TOECs of CCT will obviously affect the driving source of DFCGW mode and its modal expansion coefficient, which is intrinsically able to influence the efficiency of cumulative second-harmonic generation(SHG) by primary CGW propagation. Theoretical analyses and numerical simulations demonstrate that the second harmonic of primary CGW is monotonic and very sensitive to the changes in the inner layer TOECs of CCT, while the linear properties of primary CGW propagation almost remain unchanged. Our results provide a potential application for accurately characterizing the level of early damage in the inner layer of CCT through the efficiency of cumulative SHG by primary CGW propagation.展开更多
The feasibility of using the nonlinear effect of primary circumferential guided wave(CGW)propagation for characterizing the change of inner layer thickness of a composite circular tube(CCT)has been investigated.An app...The feasibility of using the nonlinear effect of primary circumferential guided wave(CGW)propagation for characterizing the change of inner layer thickness of a composite circular tube(CCT)has been investigated.An appropriate mode pair of the fundamental and double-frequency CGWs(DFCGWs)has been selected to enable the second harmonics of primary wave mode in the given CCT to accumulate along the circumferential direction.When changes in the inner layer thickness(described as the equivalent inner layer thickness)take place,the corresponding nonlinear CGW measurements are conducted.It is found that there is a direct correlation between change of equivalent inner layer thickness of the CCT and the relative acoustic nonlinearity parameter(Δβ)measured with CGWs propagating through one full circumference,and that the effect of second-harmonic generation(SHG)is very sensitive to change in the inner layer thickness.The experimental result obtained demonstrates the feasibility for quantitatively assessing the change of equivalent inner layer thickness in CCTs using the effect of SHG by primary CGW propagation.展开更多
Based on the two-arc profile assumption,the expansion deformation and energy absorption of circular tubes compressed by conical-cylindrical dies were reconsidered.First,the deformation of the two arcs was analyzed ind...Based on the two-arc profile assumption,the expansion deformation and energy absorption of circular tubes compressed by conical-cylindrical dies were reconsidered.First,the deformation of the two arcs was analyzed independently and an improved model denoted as Model-I was established.Then,by further involving the coupling between the bending moment and membrane forces,a more elaborate model,i.e.,Model-II was developed.Afterwards,experiments and simulations were conducted to verify the models,which show that,compared with previous theoretical models,Model-II could not only capture the prominent features of the deformation,but also improve the prediction accuracy of the steady driving force significantly.By means of this model,it was found that the critical semi-conical angle,which makes the driving force minimum,increases with the increase of the friction coefficient,expansion ratio as well as the radius/thickness ratio of the tube.And,the energy dissipation due to stretching is always greater than that of bending,while the friction dissipation can account for the largest proportion at small semi-conical angle or large friction coefficient.At a certain friction and die conditions,the specific energy absorption of expanded tubes can be much higher than that under progressive collapse mode.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11474361,11474093 and 11274388
文摘The effect of second-harmonic generation (SHG) by primary (fundamental) circumferential guided wave (CGW) propagation is investigated from a numerical standpoint. To enable that the second harmonic of the primary CGW mode can accumulate along the circumferential direction, an appropriate mode pair of primary and double frequency CGWs is chosen. Finite element simulations and evaluations of nonlinear CGW propagation are analyzed for the selected CGW mode pair. The numerical simulations performed directly demonstrate that the response of SHG is completely generated by the desired primary CGW mode that satisfies the condition of phase velocity matching at a specific driving frequency, and that the second harmonic of the primary CGW mode does have a cumulative effect with circumferential angles. The numerical perspective obtained yields an insight into the complicated physical process of SHG of primary CGW propagation unavailable previously.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11474361 and 11274388
文摘The experimental observation of cumulative second-harmonic generation of the primary circumferential guided wave propagation is reported. A pair of wedge transducers is used to generate the primary circumferential guided wave desired and to detect its fundamental-frequency and second-harmonic amplitudes on the outside surface of the circular tube. The amplitudes of the fundamental waves and the second harmonics of the circumferential guided wave propagation are measured for different separations between the two wedge transducers. At the driving frequency where the primary and the double-frequency circumferential guided waves have the same linear phase velocities, the clear second-harmonic signals can be observed. The quantitative relationships between the second-harmonic amplitudes and circumferential angle are analyzed. It is experimentally verified that the second harmonics of primary circumferential guided waves do have a cumulative growth effect with the circumferential angle.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11834008,11474361,11632004,and 11622430)
文摘A theoretical model to analyze the nonlinear circumferential guided wave(CGW) propagation in a composite circular tube(CCT) is established. The response features of nonlinear CGWs to early damage [denoted by variations in third-order elastic constants(TOECs)] in an inner layer of CCT are investigated. On the basis of the modal expansion approach, the second-harmonic field of primary CGW propagation can be assumed to be a linear sum of a series of double-frequency CGW(DFCGW) modes. The quantitative relationship of DFCGW mode versus the relative changes in the inner layer TOECs is then investigated. It is found that the changes in the inner layer TOECs of CCT will obviously affect the driving source of DFCGW mode and its modal expansion coefficient, which is intrinsically able to influence the efficiency of cumulative second-harmonic generation(SHG) by primary CGW propagation. Theoretical analyses and numerical simulations demonstrate that the second harmonic of primary CGW is monotonic and very sensitive to the changes in the inner layer TOECs of CCT, while the linear properties of primary CGW propagation almost remain unchanged. Our results provide a potential application for accurately characterizing the level of early damage in the inner layer of CCT through the efficiency of cumulative SHG by primary CGW propagation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12074050,11834008,and 11704410).
文摘The feasibility of using the nonlinear effect of primary circumferential guided wave(CGW)propagation for characterizing the change of inner layer thickness of a composite circular tube(CCT)has been investigated.An appropriate mode pair of the fundamental and double-frequency CGWs(DFCGWs)has been selected to enable the second harmonics of primary wave mode in the given CCT to accumulate along the circumferential direction.When changes in the inner layer thickness(described as the equivalent inner layer thickness)take place,the corresponding nonlinear CGW measurements are conducted.It is found that there is a direct correlation between change of equivalent inner layer thickness of the CCT and the relative acoustic nonlinearity parameter(Δβ)measured with CGWs propagating through one full circumference,and that the effect of second-harmonic generation(SHG)is very sensitive to change in the inner layer thickness.The experimental result obtained demonstrates the feasibility for quantitatively assessing the change of equivalent inner layer thickness in CCTs using the effect of SHG by primary CGW propagation.
基金the National Key R&D Program of China with Project No.2016YFC0801200.
文摘Based on the two-arc profile assumption,the expansion deformation and energy absorption of circular tubes compressed by conical-cylindrical dies were reconsidered.First,the deformation of the two arcs was analyzed independently and an improved model denoted as Model-I was established.Then,by further involving the coupling between the bending moment and membrane forces,a more elaborate model,i.e.,Model-II was developed.Afterwards,experiments and simulations were conducted to verify the models,which show that,compared with previous theoretical models,Model-II could not only capture the prominent features of the deformation,but also improve the prediction accuracy of the steady driving force significantly.By means of this model,it was found that the critical semi-conical angle,which makes the driving force minimum,increases with the increase of the friction coefficient,expansion ratio as well as the radius/thickness ratio of the tube.And,the energy dissipation due to stretching is always greater than that of bending,while the friction dissipation can account for the largest proportion at small semi-conical angle or large friction coefficient.At a certain friction and die conditions,the specific energy absorption of expanded tubes can be much higher than that under progressive collapse mode.