To address the lack of systematic studies on heavy metal fluorescent probes in typical buffer solutions,this study developed a Fe^(3+)and Cu^(2+)fluorescent probe,DHU‑NP‑4,based on a naphthalimide fluorophore.Comparat...To address the lack of systematic studies on heavy metal fluorescent probes in typical buffer solutions,this study developed a Fe^(3+)and Cu^(2+)fluorescent probe,DHU‑NP‑4,based on a naphthalimide fluorophore.Comparative analysis of the probe's performance in various buffer systems revealed that buffers with high organic content are unsuitable for evaluating such probes.Furthermore,the pH of the solvent system was found to significantly influence the probe's behavior.Under highly acidic conditions(pH≤2),DHU‑NP‑4 exhibited exceptional specificity for Fe^(3+),while in alkaline conditions,it demonstrated high specificity for Cu^(2+).Leveraging these properties,the probe enabled the quantitative detection of Fe^(3+)and Cu^(2+)in solution.展开更多
The spherical macroporous cellulose(SMC) was fabricated using medical absorbent cotton as raw material and nano CaCO3 as porogenic agents.And then,the phenylglycine was grafted onto the SMC to obtain the novel spheric...The spherical macroporous cellulose(SMC) was fabricated using medical absorbent cotton as raw material and nano CaCO3 as porogenic agents.And then,the phenylglycine was grafted onto the SMC to obtain the novel spherical macroporous cellulose derivative adsorbent(PSMC).FT-IR and scanning electron microscope(SEM) were employed to characterize the adsorbents and Fe3+ ions served as model solute to evaluate the adsorption property of the adsorbents.The experimental results show that the amount of porogenic agents and the value of pH have obvious influence on adsorption capacity of the adsorbents.The data of adsorption kinetic and isotherm display that the adsorbents possess excellent equilibrium adsorption capacity(348.94 mg/g) and have a bright prospect and considerable potential in the treatment of Fe3+ ions in wastewater.展开更多
The availability of chemical and biological data presented in this paper is the basis for understanding not only the current state of anti-cancer drugs based on gold(Ⅲ),but also the rationale for strategies for futur...The availability of chemical and biological data presented in this paper is the basis for understanding not only the current state of anti-cancer drugs based on gold(Ⅲ),but also the rationale for strategies for future drug design.New Au(Ⅲ)nanosized complexes of cefotaxime(ceph-3)and cefepime(ceph-4)ligands as a 3rd and 4th of cephalosporin generation drugs were synthesized.Gold(Ⅲ)complexes were discussed based on the elemental,molar conductance,thermal and magnetic moment measurements as well as spectral(FTIR,1HNMR,UV-Vis,and XRD)techniques.FT-IR spectra revealed that the ceph-3 and ceph-4 ligands reacted as a bidentate ligands through carboxylate oxygen andβ-lactam oxygen groups.The analytical analysis confirm that the molar ratio is 1∶1(Au 3+/ceph)with general formula[Au(L)(Cl)2]where L=ceph-3 or ceph-4.The structures of Au(Ⅲ)complexes were presence as a square planar geometry.X-ray diffraction patterns referred to a crystalline nature for all synthesized complexes.TEM analyses confirmed that the synthetic gold(Ⅲ)complexes have a nanosized particles.In vitro antimicrobial activities of Au(Ⅲ)complexes were evaluated towards two types of bacteria(G+&G-).The antitumor activities of gold(Ⅲ)complexes are appraised against breast(MCF-7)and colorectal adenocarcinoma(Caco-2)cell lines,which means that the two complexes may consider promising anticancer drugs.展开更多
Chromium(Ⅵ)can react with diphenylcarbazide(DPC)in perchloric acidic medium to form the complex of chromium(Ⅵ)-DPC which can be extracted with n-pentanol.This was used for the determination of trace chromium...Chromium(Ⅵ)can react with diphenylcarbazide(DPC)in perchloric acidic medium to form the complex of chromium(Ⅵ)-DPC which can be extracted with n-pentanol.This was used for the determination of trace chromium(Ⅵ)and chromium(Ⅲ)in river water by flame atomic absorption spectrometry.KMnO4 was used as the oxidant for the oxidation of chromium(Ⅲ)to chromium(Ⅵ)which was then determined by the same way.The limit of detection was 0.0007 mg·L-1and Beer’s law was obeyed in a wide linear dynamic range of 0.0007~1.0 mg·L-1chromium(Ⅵ).The recovery of chromium(Ⅵ)and chromium(Ⅲ)was 100%~112%and 89%~104%,respectively.展开更多
文摘To address the lack of systematic studies on heavy metal fluorescent probes in typical buffer solutions,this study developed a Fe^(3+)and Cu^(2+)fluorescent probe,DHU‑NP‑4,based on a naphthalimide fluorophore.Comparative analysis of the probe's performance in various buffer systems revealed that buffers with high organic content are unsuitable for evaluating such probes.Furthermore,the pH of the solvent system was found to significantly influence the probe's behavior.Under highly acidic conditions(pH≤2),DHU‑NP‑4 exhibited exceptional specificity for Fe^(3+),while in alkaline conditions,it demonstrated high specificity for Cu^(2+).Leveraging these properties,the probe enabled the quantitative detection of Fe^(3+)and Cu^(2+)in solution.
基金Projects(81373284,81102344) supported by the National Natural Science Foundation of China
文摘The spherical macroporous cellulose(SMC) was fabricated using medical absorbent cotton as raw material and nano CaCO3 as porogenic agents.And then,the phenylglycine was grafted onto the SMC to obtain the novel spherical macroporous cellulose derivative adsorbent(PSMC).FT-IR and scanning electron microscope(SEM) were employed to characterize the adsorbents and Fe3+ ions served as model solute to evaluate the adsorption property of the adsorbents.The experimental results show that the amount of porogenic agents and the value of pH have obvious influence on adsorption capacity of the adsorbents.The data of adsorption kinetic and isotherm display that the adsorbents possess excellent equilibrium adsorption capacity(348.94 mg/g) and have a bright prospect and considerable potential in the treatment of Fe3+ ions in wastewater.
基金the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University,through the Research Funding Program(#RFP-1440-3)。
文摘The availability of chemical and biological data presented in this paper is the basis for understanding not only the current state of anti-cancer drugs based on gold(Ⅲ),but also the rationale for strategies for future drug design.New Au(Ⅲ)nanosized complexes of cefotaxime(ceph-3)and cefepime(ceph-4)ligands as a 3rd and 4th of cephalosporin generation drugs were synthesized.Gold(Ⅲ)complexes were discussed based on the elemental,molar conductance,thermal and magnetic moment measurements as well as spectral(FTIR,1HNMR,UV-Vis,and XRD)techniques.FT-IR spectra revealed that the ceph-3 and ceph-4 ligands reacted as a bidentate ligands through carboxylate oxygen andβ-lactam oxygen groups.The analytical analysis confirm that the molar ratio is 1∶1(Au 3+/ceph)with general formula[Au(L)(Cl)2]where L=ceph-3 or ceph-4.The structures of Au(Ⅲ)complexes were presence as a square planar geometry.X-ray diffraction patterns referred to a crystalline nature for all synthesized complexes.TEM analyses confirmed that the synthetic gold(Ⅲ)complexes have a nanosized particles.In vitro antimicrobial activities of Au(Ⅲ)complexes were evaluated towards two types of bacteria(G+&G-).The antitumor activities of gold(Ⅲ)complexes are appraised against breast(MCF-7)and colorectal adenocarcinoma(Caco-2)cell lines,which means that the two complexes may consider promising anticancer drugs.
文摘Chromium(Ⅵ)can react with diphenylcarbazide(DPC)in perchloric acidic medium to form the complex of chromium(Ⅵ)-DPC which can be extracted with n-pentanol.This was used for the determination of trace chromium(Ⅵ)and chromium(Ⅲ)in river water by flame atomic absorption spectrometry.KMnO4 was used as the oxidant for the oxidation of chromium(Ⅲ)to chromium(Ⅵ)which was then determined by the same way.The limit of detection was 0.0007 mg·L-1and Beer’s law was obeyed in a wide linear dynamic range of 0.0007~1.0 mg·L-1chromium(Ⅵ).The recovery of chromium(Ⅵ)and chromium(Ⅲ)was 100%~112%and 89%~104%,respectively.