期刊文献+
共找到28,303篇文章
< 1 2 250 >
每页显示 20 50 100
An Algorithm for Cloud-based Web Service Combination Optimization Through Plant Growth Simulation
1
作者 Li Qiang Qin Huawei +1 位作者 Qiao Bingqin Wu Ruifang 《系统仿真学报》 北大核心 2025年第2期462-473,共12页
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base... In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm. 展开更多
关键词 cloud-based service scheduling algorithm resource constraint load optimization cloud computing plant growth simulation algorithm
在线阅读 下载PDF
Bayesian-based ant colony optimization algorithm for edge detection
2
作者 YU Yongbin ZHONG Yuanjingyang +6 位作者 FENG Xiao WANG Xiangxiang FAVOUR Ekong ZHOU Chen CHENG Man WANG Hao WANG Jingya 《Journal of Systems Engineering and Electronics》 2025年第4期892-902,共11页
Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of t... Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task. 展开更多
关键词 ant colony optimization(Aco) Bayesian algorithm edge detection transfer function.
在线阅读 下载PDF
Optimization of jamming formation of USV offboard active decoy clusters based on an improved PSO algorithm 被引量:2
3
作者 Zhaodong Wu Yasong Luo Shengliang Hu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期529-540,共12页
Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for t... Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources. 展开更多
关键词 Electronic countermeasure Offboard active decoy USV cluster Jamming formation optimization Improved PSO algorithm
在线阅读 下载PDF
Temperature control for liquid-cooled fuel cells based on fuzzy logic and variable-gain generalized supertwisting algorithm
4
作者 CHEN Lin JIA Zhi-huan +1 位作者 DING Tian-wei GAO Jin-wu 《控制理论与应用》 北大核心 2025年第8期1596-1605,共10页
The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade tempe... The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade temperature regulation performance.To address these challenges,we propose a composite control scheme combining fuzzy logic and a variable-gain generalized supertwisting algorithm(VG-GSTA).Firstly,a one-dimensional(1D)fuzzy logic controler(FLC)for the pump ensures stable coolant flow,while a two-dimensional(2D)FLC for the fan regulates the stack temperature near the reference value.The VG-GSTA is then introduced to eliminate steady-state errors,offering resistance to disturbances and minimizing control oscillations.The equilibrium optimizer is used to fine-tune VG-GSTA parameters.Co-simulation verifies the effectiveness of our method,demonstrating its advantages in terms of disturbance immunity,overshoot suppression,tracking accuracy and response speed. 展开更多
关键词 liquid-cooled fuel cell temperature control generalized supertwisting algorithm fuzzy control equilibrium optimizer
在线阅读 下载PDF
A hybrid genetic algorithm to the program optimization model based on a heterogeneous network
5
作者 CHEN Hang DOU Yajie +3 位作者 CHEN Ziyi JIA Qingyang ZHU Chen CHEN Haoxuan 《Journal of Systems Engineering and Electronics》 2025年第4期994-1005,共12页
Project construction and development are an impor-tant part of future army designs.In today’s world,intelligent war-fare and joint operations have become the dominant develop-ments in warfare,so the construction and ... Project construction and development are an impor-tant part of future army designs.In today’s world,intelligent war-fare and joint operations have become the dominant develop-ments in warfare,so the construction and development of the army need top-down,top-level design,and comprehensive plan-ning.The traditional project development model is no longer suf-ficient to meet the army’s complex capability requirements.Projects in various fields need to be developed and coordinated to form a joint force and improve the army’s combat effective-ness.At the same time,when a program consists of large-scale project data,the effectiveness of the traditional,precise mathe-matical planning method is greatly reduced because it is time-consuming,costly,and impractical.To solve above problems,this paper proposes a multi-stage program optimization model based on a heterogeneous network and hybrid genetic algo-rithm and verifies the effectiveness and feasibility of the model and algorithm through an example.The results show that the hybrid algorithm proposed in this paper is better than the exist-ing meta-heuristic algorithm. 展开更多
关键词 program optimization heterogeneous network genetic algorithm portfolio selection.
在线阅读 下载PDF
Optimization model for performance-based warranty decision of degraded systems based on improved sparrow search algorithm
6
作者 DONG Enzhi CHENG Zhonghua +3 位作者 LIU Zichang ZHU Xi WANG Rongcai BAI Yongsheng 《Journal of Systems Engineering and Electronics》 2025年第5期1259-1280,共22页
Performance-based warranties(PBWs)are widely used in industry and manufacturing.Given that PBW can impose financial burdens on manufacturers,rational maintenance decisions are essential for expanding profit margins.Th... Performance-based warranties(PBWs)are widely used in industry and manufacturing.Given that PBW can impose financial burdens on manufacturers,rational maintenance decisions are essential for expanding profit margins.This paper proposes an optimization model for PBW decisions for systems affected by Gamma degradation processes,incorporating periodic inspection.A system performance degradation model is established.Preventive maintenance probability and corrective renewal probability models are developed to calculate expected warranty costs and system availability.A benefits function,which includes incentives,is constructed to optimize the initial and subsequent inspection intervals and preventive maintenance thresholds,thereby maximizing warranty profit.An improved sparrow search algorithm is developed to optimize the model,with a case study on large steam turbine rotor shafts.The results suggest the optimal PBW strategy involves an initial inspection interval of approximately 20 months,with subsequent intervals of about four months,and a preventive maintenance threshold of approximately 37.39 mm wear.When compared to common cost-minimization-based condition maintenance strategies and PBW strategies that do not differentiate between initial and subsequent inspection intervals,the proposed PBW strategy increases the manufacturer’s profit by 1%and 18%,respectively.Sensitivity analyses provide managerial recommendations for PBW implementation.The PBW strategy proposed in this study significantly increases manufacturers’profits by optimizing inspection intervals and preventive maintenance thresholds,and manufacturers should focus on technological improvement in preventive maintenance and cost control to further enhance earnings. 展开更多
关键词 performance-based warranty gamma process periodic inspection intelligent optimization algorithm
在线阅读 下载PDF
Topological optimization of metamaterial absorber based on improved estimation of distribution algorithm
7
作者 TAO Shifei LIU Beichen +2 位作者 LIU Sixing WU Fan WANG Hao 《Journal of Systems Engineering and Electronics》 2025年第3期634-641,共8页
An improved estimation of distribution algorithm(IEDA)is proposed in this paper for efficient design of metamaterial absorbers.This algorithm establishes a probability model through the selected dominant groups and sa... An improved estimation of distribution algorithm(IEDA)is proposed in this paper for efficient design of metamaterial absorbers.This algorithm establishes a probability model through the selected dominant groups and samples from the model to obtain the next generation,avoiding the problem of building-blocks destruction caused by crossover and mutation.Neighboring search from artificial bee colony algorithm(ABCA)is introduced to enhance the local optimization ability and improved to raise the speed of convergence.The probability model is modified by boundary correction and loss correction to enhance the robustness of the algorithm.The proposed IEDA is compared with other intelligent algorithms in relevant references.The results show that the proposed IEDA has faster convergence speed and stronger optimization ability,proving the feasibility and effectiveness of the algorithm. 展开更多
关键词 METAMATERIAL topological optimization estimation of distribution algorithm
在线阅读 下载PDF
Multi-platform collaborative MRC-PSO algorithm for anti-ship missile path planning
8
作者 LIU Gang GUO Xinyuan +2 位作者 HUANG Dong CHEN Kezhong LI Wu 《Journal of Systems Engineering and Electronics》 2025年第2期494-509,共16页
To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO al... To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO algorithm utilizes a semi-rasterization environment modeling technique and inte-grates the geometric gradient law of ASMs which distinguishes itself from other collaborative path planning algorithms by fully considering the coupling between collaborative paths. Then, MRC-PSO algorithm conducts chunked stepwise recursive evo-lution of particles while incorporating circumvent, coordination, and smoothing operators which facilitates local selection opti-mization of paths, gradually reducing algorithmic space, accele-rating convergence, and enhances path cooperativity. Simula-tion experiments comparing the MRC-PSO algorithm with the PSO algorithm, genetic algorithm and operational area cluster real-time restriction (OACRR)-PSO algorithm, which demon-strate that the MRC-PSO algorithm has a faster convergence speed, and the average number of iterations is reduced by approximately 75%. It also proves that it is equally effective in resolving complex scenarios involving multiple obstacles. More-over it effectively addresses the problem of path crossing and can better satisfy the requirements of multi-platform collabora-tive path planning. The experiments are conducted in three col-laborative operation modes, namely, three-to-two, three-to-three, and four-to-two, and the outcomes demonstrate that the algorithm possesses strong universality. 展开更多
关键词 anti-ship missiles multi-platform collaborative path planning particle swarm optimization(PSO)algorithm
在线阅读 下载PDF
基于改进VMD及ConvNeXt的小电流接地系统单相接地故障选线方法 被引量:1
9
作者 张浩 张大海 +2 位作者 刘乃毓 吴奎忠 侍哲 《高电压技术》 北大核心 2025年第2期730-741,I0021,共13页
对于小电流接地系统的单相接地故障选线,传统方法普遍采用基于一维信号的选线模型,存在选线准确率低、抗噪性弱等问题。为此提出一种改进的变分模态分解及Conv Ne Xt的小电流接地系统单相接地故障选线方法。首先引入蚁狮算法优化变分模... 对于小电流接地系统的单相接地故障选线,传统方法普遍采用基于一维信号的选线模型,存在选线准确率低、抗噪性弱等问题。为此提出一种改进的变分模态分解及Conv Ne Xt的小电流接地系统单相接地故障选线方法。首先引入蚁狮算法优化变分模态分解算法,通过蚁狮算法自动寻优选取合适的分解次数和惩罚因子,计算分解得到的各分量的分布熵,将其中的噪声分量筛选去除,将其余有效分量进行线性重构得到降噪后的零序电流信号;其次,将经过降噪处理后的一维零序电流信号经格拉姆角场转换为二维图像,制备故障选线数据集;然后,引入预训练的ConvNeXt模型,根据该研究数据模型特征,在其已有权重基础上对模型参数进行对应微调,从而提高模型精度并形成最终的选线模型;最后引入绝对平均误差、均方根误差作为评价指标验证所提降噪算法有效性。分别在加入噪声与否的前提下,将所提模型与3种选线模型相比较。实验结果表明该模型的准确率最高、抗噪性方面更好,其中该研究算法准确率达到了99.82%并且在不同噪声条件下都能维持91%以上的准确率,高于其他选线模型,克服了传统故障选线方法准确率低、抗噪性差的问题。 展开更多
关键词 故障选线 蚁狮优化算法 变分模态分解 分布熵 格拉姆角场 conv Ne Xt
在线阅读 下载PDF
基于ARIMA与GGACO算法的ETL任务调度机制研究
10
作者 周金治 刘艺涵 吴斌 《控制工程》 北大核心 2025年第2期208-215,共8页
随着抽取-转换-加载(extraction-transformation-loading,ETL)系统的ETL任务量增多,任务复杂度和波动性也随之提升,现有的ETL任务调度机制难以满足调度需求,如时间片轮转法受限于弹性调度能力弱、效率低下等缺点。为研究如何提升ETL任... 随着抽取-转换-加载(extraction-transformation-loading,ETL)系统的ETL任务量增多,任务复杂度和波动性也随之提升,现有的ETL任务调度机制难以满足调度需求,如时间片轮转法受限于弹性调度能力弱、效率低下等缺点。为研究如何提升ETL任务调度机制的弹性调度能力以及执行效率,提出了一种基于整合移动平均自回归(autoregressive integrated moving average,ARIMA)模型与贪心-遗传-蚁群优化(greedy-genetic-ant colony optimization,GGACO)算法的ETL任务调度机制。初期,建立ARIMA模型并弹性地结合贪心算法计算初始解;中期,利用遗传算法的全局快收敛的特性结合初始解圈定最优解的大致范围;最后,利用蚁群优化算法的局部快速收敛性进行最优解搜索。实验结果表明:该调度机制能够弹性地指导任务调度尽可能地找到最优解,减少任务的执行时间,以及尽可能实现更高效的负载均衡。 展开更多
关键词 弹性调度 ARIMA 贪心算法 遗传算法 蚁群优化算法
在线阅读 下载PDF
基于遗传算法和Copula函数的流域可供水量计算模型及应用
11
作者 李继清 吴亮 +1 位作者 郑威 刘曾美 《中国农村水利水电》 北大核心 2025年第8期48-54,60,共8页
准确的水量推求是流域水资源合理开发利用的基础,其主要基于干流径流资料采用适线法进行水文频率分析,为保证可供水量设计值计算的准确性和合理性一般需要考虑不同的分布曲线和适线准则,同时为考虑各地区用水需求的差异,不可忽略可供水... 准确的水量推求是流域水资源合理开发利用的基础,其主要基于干流径流资料采用适线法进行水文频率分析,为保证可供水量设计值计算的准确性和合理性一般需要考虑不同的分布曲线和适线准则,同时为考虑各地区用水需求的差异,不可忽略可供水量的地区组成。建立了一种基于遗传算法和Copula函数的流域可供水量计算模型,模型选取两参数Gamma、P-Ⅲ和对数正态3种不同分布线型,基于相对离差平方和最小准则和均方根误差最小准则两种适线准则通过遗传算法完成优化适线求解流域各支流水量服从的最优分布线型,并以此为基础基于GH Copula函数构造流域下游设计断面可供水量的联合分布函数,计算可供水量的同时能够反映水量的地区组成。应用于流溪河流域,得出不同情景下各支流的最优分布线型,计算出不同保证率下流溪河流域下游控制断面可供水量范围。在流域各支流水量优化适线结果中,基于离差平方和最小准则进行优化适线的结果对于样本的低水点据有较好的拟合效果,而基于均方根误差最小准则进行优化适线的结果对于整体样本点据的拟合效果较好,同时基于此结果使用GH Copula函数构造流域设计断面可供水量的联合分布函数求解流域可供水量可能够较好的反映其地区组成并且较传统的可供水量推求方法有较高的准确性。 展开更多
关键词 可供水量计算 优化适线 遗传算法 GH copula 参数估计
在线阅读 下载PDF
基于WOA-WNN-LSTM算法的红外CO痕量气体压力补偿与时序浓度分析
12
作者 田富超 张海龙 +3 位作者 苏嘉豪 梁运涛 王琳 王泽文 《光谱学与光谱分析》 北大核心 2025年第4期994-1007,共14页
红外光谱分析是工业环境气体定量分析的重要手段,当前红外气体检测仪的测量精度受环境压力变化影响较大,导致检测数据在不同压力条件下偏离实际气体浓度。为提高红外气体传感器的精度,选择了鲸鱼优化算法(whale optimization algorithm,... 红外光谱分析是工业环境气体定量分析的重要手段,当前红外气体检测仪的测量精度受环境压力变化影响较大,导致检测数据在不同压力条件下偏离实际气体浓度。为提高红外气体传感器的精度,选择了鲸鱼优化算法(whale optimization algorithm,WOA)和小波神经网络(wavelet neural network,WNN)相结合的压力补偿算法,并结合长短期记忆法(long short-term memory,LSTM)对补偿后的数据进行预测。通过搭建工业环境气体压力补偿实验平台,使用高精度配气仪配置100~900 ppm标准CO气体,在80~120 kPa范围内进行数百组重复实验,发现CO气体传感器在负压条件下测量值小于标气浓度,正压条件下测量值大于标气浓度,并随压力变化呈线性关系,绝对误差最高为86 ppm。将传感器数据使用小波神经网络进行误差降低,初步补偿后的CO误差降至26 ppm,但由于参数可移植性较差,个别数据误差较大。进一步使用鲸鱼优化算法优化小波神经网络的参数后,补偿效果显著提升,传感器测量值与真值之差保持在0.004%以内且数据稳定。最终结合LSTM进行气体浓度预测,预测值与实际值之间的均方根误差(RMSE)均小于0.1,平均绝对误差(MAE)均小于0.020,实验结果表明,WOA-WNN-LSTM算法能够有效提高红外气体传感器的测量精度,成功消除环境压力对测量结果的影响,为工业环境气体检测提供了更为可靠和精准的解决方案。 展开更多
关键词 红外光谱分析 环境压力补偿 鲸鱼优化算法 小波神经网络 时序浓度预测
在线阅读 下载PDF
结合FISCO BCOS与拓扑优化一致性算法的配电网多目标经济调度
13
作者 王桂兰 张成 周国亮 《计算机工程》 北大核心 2025年第7期348-361,共14页
随着分布式能源的高比例渗透、大量储能单元以及柔性负荷的加入,主动配电网的优化调度变得更加具有挑战性。现有经济调度较少考虑柔性负荷和储能单元的接入,收敛速度较慢。结合国家“双碳”目标,提出FISCO BCOS平台下结合通信拓扑优化... 随着分布式能源的高比例渗透、大量储能单元以及柔性负荷的加入,主动配电网的优化调度变得更加具有挑战性。现有经济调度较少考虑柔性负荷和储能单元的接入,收敛速度较慢。结合国家“双碳”目标,提出FISCO BCOS平台下结合通信拓扑优化一致性算法的配电网多目标经济调度策略。该策略综合考虑发电机发电成本、污染气体排放、储能成本和柔性负荷用电效益,利用通信拓扑优化的一致性算法提高系统收敛速度,结合FISCO BCOS联盟链的存储和精简实用拜占庭容错(rPBFT)共识机制优化节点间的信息共享,降低领导节点的中心性,防止部分节点作恶,实现配电网多目标最优功率分配。仿真结果表明,提出的配电网多目标调度经济调度策略收敛速度快,在领导节点切换、不同阶段节点退出与加入及功率交换指令变化、收敛系数变动场景下仍能较快收敛,具有良好的鲁棒性和稳定性,且收敛速度优于快速一致性算法,若目标权重系数选取恰当,经济与环境结果均优于多目标NSGA-II算法。 展开更多
关键词 主动配电网 区块链 FISco BcoS平台 多目标调度 通信拓扑优化 一致性算法
在线阅读 下载PDF
融合ICOA及PSM的轮毂电机多场耦合噪声优化
14
作者 吴华伟 李蒗 +2 位作者 李智 曾运运 彭建平 《重庆交通大学学报(自然科学版)》 北大核心 2025年第7期23-32,共10页
为削弱轮毂电机电磁振动噪声,以18槽16极14吋永磁轮毂电机为例,提出了一种融合改进浣熊优化算法(ICOA)及参数扫描法(PSM)的结构优化设计方法。建立基于PSM的齿槽转矩数据库,解析定子辅助槽数量对齿槽转矩的影响机理;构建基于自适应边界... 为削弱轮毂电机电磁振动噪声,以18槽16极14吋永磁轮毂电机为例,提出了一种融合改进浣熊优化算法(ICOA)及参数扫描法(PSM)的结构优化设计方法。建立基于PSM的齿槽转矩数据库,解析定子辅助槽数量对齿槽转矩的影响机理;构建基于自适应边界和淘汰机制的改进浣熊优化算法,设计基于ICOA的求解器对轮毂电机辅助槽进行优化,并与基于COA、MA、SSA的3种求解器对比寻优性能;搭建轮毂电机的结构场、电磁场及声场等多物理场耦合仿真模型,对比定子电枢结构优化前后的噪声声压级。研究结果表明:ICOA求解器在收敛速度和结果精度上优于其他求解器;优化后齿槽转矩幅值削弱59.08%;在空载时,电机转轴轴向的振动削弱了9.916×10^(3)mm/s^(2),转轴径向的振动削弱了2.1919×10^(4)mm/s^(2),A计权声压级减小了3.818 dB;在负载时,转轴轴向的振动削弱了4.8459×10^(4)mm/s^(2),转轴径向的振动削弱了4.4226×10^(4)mm/s^(2),A计权声压级减小了7.648 dB;7倍频振动得到有效抑制,噪声总体水平从70 dB级削弱到60 dB级,提高了驾乘人员的安全性和舒适性。 展开更多
关键词 车辆工程 轮毂电机 噪声优化 改进浣熊优化算法 参数扫描法 多场耦合
在线阅读 下载PDF
基于MICOA的随钻加速度计误差在线补偿
15
作者 杨金显 贺紫薇 《电子测量与仪器学报》 北大核心 2025年第1期187-194,共8页
为了提高随钻加速度计测量精度,设计一种基于磁惯性长鼻浣熊算法的加速度计误差在线补偿方法。首先,根据误差来源建立误差补偿模型;利用陀螺仪和磁强计建立重力夹角与磁重力夹角约束条件;将加速度真值与理论值模值之差设置为目标函数。... 为了提高随钻加速度计测量精度,设计一种基于磁惯性长鼻浣熊算法的加速度计误差在线补偿方法。首先,根据误差来源建立误差补偿模型;利用陀螺仪和磁强计建立重力夹角与磁重力夹角约束条件;将加速度真值与理论值模值之差设置为目标函数。其次,在长鼻浣熊算法基础上,根据递推重力加速度确定误差参数的初始搜索边界,同时根据当前误差参数、最优误差参数、边界值三者的相对距离缩小边界;再设计分界点筛选初始误差参数,使算法最初就朝着高质量解的方向搜索,同时保留部分劣解以增加误差参数多样性;接着在算法的全局探索阶段设计参数使其根据加速度计当前误差参数与误差参数平均值之间的误差来调整加速度计误差参数的搜索范围;最后,将重力模值之比设为深度开发阈值,构造高斯变异个体向量使加速度计误差参数跳出局部最优。实验结果表明:经MICOA补偿之后,加速度误差减小,井斜角范围降低了约62.5%,不同钻进角度下,井斜角均方根误差与标准差均能保持在1°以下。 展开更多
关键词 随钻测量 加速度计 长鼻浣熊算法 误差补偿 井斜角
在线阅读 下载PDF
改进Sine混沌映射CO-ELM锂离子电池RUL预测 被引量:1
16
作者 王鹏 周俊 +1 位作者 伍星 刘韬 《储能科学与技术》 北大核心 2025年第4期1603-1616,共14页
针对锂离子电池采用极限学习机进行剩余使用寿命预测时,存在预测结果不稳定和预测准确度不高的问题,提出采用猎豹优化算法优化ELM对锂离子电池剩余使用寿命进行预测。提取锂离子电池数据集中等压降放电时间作为间接健康因子;引入猎豹优... 针对锂离子电池采用极限学习机进行剩余使用寿命预测时,存在预测结果不稳定和预测准确度不高的问题,提出采用猎豹优化算法优化ELM对锂离子电池剩余使用寿命进行预测。提取锂离子电池数据集中等压降放电时间作为间接健康因子;引入猎豹优化算法对ELM模型参数进行优化,并使用改进的Sine混沌映射优化猎豹初始种群;最后采用NASA卓越预测中心提供的电池数据集和牛津大学提供的电池老化数据集对该模型有效性和准确性进行验证。通过原始ELM模型进行多次实验,得到该数据集进行预测的最佳训练数据量以及最佳神经元数量;利用所提出的SCO-ELM模型进行电池的剩余使用寿命预测,对比原始ELM与遗传算法优化ELM模型,均方根误差在0.004以下,且具有较快的预测时间;之后进行电池全周期寿命预测,预测精度平均提升40%,预测速度提升78%以上;使用B0005号电池训练结果对同类型电池组进行预测,预测精度平均提升25%,预测速度提升75%以上。实验结果表明,所提方法具有预测准确度高、预测速度快、操作复杂度低和模型稳定等优势。 展开更多
关键词 锂离子电池 剩余使用寿命 极限学习机 猎豹优化 混沌映射
在线阅读 下载PDF
小样本紫外-可见吸收光谱数据的COD测定方法
17
作者 郑培超 阮伟 +8 位作者 陈述斌 李海娟 侯艳 李成林 何浩楠 杨琴 王金梅 李彪 郭连波 《红外与激光工程》 北大核心 2025年第7期343-352,共10页
化学需氧量(Chemical Oxygen Demand,COD)浓度的精准预测在水质监测和环境保护中具有重要意义。然而,受限于样本量有限以及传统支持向量回归(Support Vector Regression,SVR)模型超参数调优计算复杂,紫外-可见(Ultraviolet-Visible,UV-V... 化学需氧量(Chemical Oxygen Demand,COD)浓度的精准预测在水质监测和环境保护中具有重要意义。然而,受限于样本量有限以及传统支持向量回归(Support Vector Regression,SVR)模型超参数调优计算复杂,紫外-可见(Ultraviolet-Visible,UV-Vis)吸收光谱在COD预测中的精度受到限制。为此,构建了适用于小样本条件的光谱数据优化策略。首先,通过核主成分分析(Kernel Principal Component Analysis,KPCA)提取光谱数据关键特征,提升数据处理效率;随后,利用基于梯度惩罚的Wasserstein生成对抗网络(Wasserstein Generative Adversarial Networks with Gradient Penalty,WGANGP)对关键特征进行数据增强,以缓解样本稀缺并提升模型对非线性关系的建模能力;最后采用牛顿-拉夫逊优化(Newton-Raphson-Based Optimizer,NRBO)实现SVR超参数的优化。实验结果表明,该方法在长江和嘉陵江水体COD预测中优于传统SVR,R^(2)从0.884 2提升至0.962 48,均方根误差(RMSE)降低36.34%,平均绝对误差(MAE)减少49.54%。该策略为光谱数据建模与水质污染监测提供了理论支持和实践依据。 展开更多
关键词 环境科学与工程 化学需氧量预测 Wasserstein生成对抗网络 紫外-可见吸收光谱 牛顿-拉夫逊优化算法 水质监测
在线阅读 下载PDF
Ant colony optimization algorithm and its application to Neuro-Fuzzy controller design 被引量:11
18
作者 Zhao Baojiang Li Shiyong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期603-610,共8页
An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and s... An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and stagnation. The results of function optimization show that the algorithm has good searching ability and high convergence speed. The algorithm is employed to design a neuro-fuzzy controller for real-time control of an inverted pendulum. In order to avoid the combinatorial explosion of fuzzy rules due tσ multivariable inputs, a state variable synthesis scheme is employed to reduce the number of fuzzy rules greatly. The simulation results show that the designed controller can control the inverted pendulum successfully. 展开更多
关键词 neuro-fuzzy controller ant colony algorithm function optimization genetic algorithm inverted pen-dulum system.
在线阅读 下载PDF
Improved ant colony optimization algorithm for the traveling salesman problems 被引量:22
19
作者 Rongwei Gan Qingshun Guo +1 位作者 Huiyou Chang Yang Yi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期329-333,共5页
Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is amo... Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is among the most important combinato- rial problems. An ACO algorithm based on scout characteristic is proposed for solving the stagnation behavior and premature con- vergence problem of the basic ACO algorithm on TSP. The main idea is to partition artificial ants into two groups: scout ants and common ants. The common ants work according to the search manner of basic ant colony algorithm, but scout ants have some differences from common ants, they calculate each route's muta- tion probability of the current optimal solution using path evaluation model and search around the optimal solution according to the mutation probability. Simulation on TSP shows that the improved algorithm has high efficiency and robustness. 展开更多
关键词 ant colony optimization heuristic algorithm scout ants path evaluation model traveling salesman problem.
在线阅读 下载PDF
Solving algorithm for TA optimization model based on ACO-SA 被引量:4
20
作者 Jun Wang Xiaoguang Gao Yongwen Zhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期628-639,共12页
An ant colony optimization (ACO)-simulated annealing (SA)-based algorithm is developed for the target assignment problem (TAP) in the air defense (AD) command and control (C2) system of surface to air missi... An ant colony optimization (ACO)-simulated annealing (SA)-based algorithm is developed for the target assignment problem (TAP) in the air defense (AD) command and control (C2) system of surface to air missile (SAM) tactical unit. The accomplishment process of target assignment (TA) task is analyzed. A firing advantage degree (FAD) concept of fire unit (FU) intercepting targets is put forward and its evaluation model is established by using a linear weighted synthetic method. A TA optimization model is presented and its solving algorithms are designed respectively based on ACO and SA. A hybrid optimization strategy is presented and developed synthesizing the merits of ACO and SA. The simulation examples show that the model and algorithms can meet the solving requirement of TAP in AD combat. 展开更多
关键词 target assignment (TA) optimization ant colony optimization (Aco algorithm simulated annealing (SA) algorithm hybrid optimization strategy.
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部