期刊文献+
共找到1,656篇文章
< 1 2 83 >
每页显示 20 50 100
Deep reinforcement learning guidance with impact time control
1
作者 LI Guofei LI Shituo +1 位作者 LI Bohao WU Yunjie 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1594-1603,共10页
In consideration of the field-of-view(FOV)angle con-straint,this study focuses on the guidance problem with impact time control.A deep reinforcement learning guidance method is given for the missile to obtain the desi... In consideration of the field-of-view(FOV)angle con-straint,this study focuses on the guidance problem with impact time control.A deep reinforcement learning guidance method is given for the missile to obtain the desired impact time and meet the demand of FOV angle constraint.On basis of the framework of the proportional navigation guidance,an auxiliary control term is supplemented by the distributed deep deterministic policy gradient algorithm,in which the reward functions are developed to decrease the time-to-go error and improve the terminal guid-ance accuracy.The numerical simulation demonstrates that the missile governed by the presented deep reinforcement learning guidance law can hit the target successfully at appointed arrival time. 展开更多
关键词 impact time deep reinforcement learning guidance law field-of-view(FOV)angle deep deterministic policy gradient
在线阅读 下载PDF
PD-type iterative learning control for nonlinear time-delay system with external disturbance 被引量:12
2
作者 Zhang Baolin Tang Gongyou Zheng Shi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期600-605,共6页
The PD-type iterative learning control design of a class of affine nonlinear time-delay systems with external disturbances is considered. Sufficient conditions guaranteeing the convergence of the n-norm of the trackin... The PD-type iterative learning control design of a class of affine nonlinear time-delay systems with external disturbances is considered. Sufficient conditions guaranteeing the convergence of the n-norm of the tracking error are derived. It is shown that the system outputs can be guaranteed to converge to desired trajectories in the absence of external disturbances and output measurement noises. And in the presence of state disturbances and measurement noises, the tracking error will be bounded uniformly. A numerical simulation example is presented to validate the effectiveness of the proposed scheme. 展开更多
关键词 time-delay system nonlinear system iterative learning control CONVERGENCE external disturbance.
在线阅读 下载PDF
Repetitive Learning Control for Time-varying Robotic Systems: A Hybrid Learning Scheme 被引量:11
3
作者 SUN Ming-Xuan HE Xiong-Xiong CHEN Bing-Yu 《自动化学报》 EI CSCD 北大核心 2007年第11期1189-1195,共7页
重复学习控制为不明确的变化时间的机器的系统追踪的 finite-time-trajectory 被介绍。在时间函数以一个反复的学习方法被学习的地方,一个混合学习计划被给在系统动力学应付经常、变化时间的 unknowns,没有泰勒表示的帮助,当常规微... 重复学习控制为不明确的变化时间的机器的系统追踪的 finite-time-trajectory 被介绍。在时间函数以一个反复的学习方法被学习的地方,一个混合学习计划被给在系统动力学应付经常、变化时间的 unknowns,没有泰勒表示的帮助,当常规微分学习方法为估计经常的被建议时。介绍重复学习控制为在每个周期的开始的起始的重新定位避免要求,是不同的,并且变化时间的 unknowns 不是必要的周期。随混合学习的采纳,靠近环的系统的州的变量的固定被保证,追踪的错误被保证作为重复增加收敛到零,这被显示出。建议计划的有效性通过数字模拟被表明。 展开更多
关键词 重复学习控制 机器人 时序变化系统 混合学习计划
在线阅读 下载PDF
Stability Analysis of Continuous-time Iterative Learning Control Systems with Multiple State Delays 被引量:11
4
作者 MENG De-Yuan JIA Ying-Min +1 位作者 DU Jun-Ping YU Fa-Shan 《自动化学报》 EI CSCD 北大核心 2010年第5期696-703,共8页
关键词 连续系统 稳定性 自动化 TDS
在线阅读 下载PDF
一种基于子图近似同构的e-Learning学习资源本体匹配方法 被引量:1
5
作者 习海旭 于枫 +2 位作者 王直 宋爱波 王晓跃 《计算机应用研究》 CSCD 北大核心 2014年第2期417-421,434,共6页
针对e-Learning学习资源本体异构问题,提出一种基于子图近似同构的本体匹配方法。该方法对现有本体匹配方法进行扩展,综合编辑距离、层次关系等特征,计算本体的结构级相似性,以点、边有序交替匹配来判断实体的有向图近似同构问题,实现... 针对e-Learning学习资源本体异构问题,提出一种基于子图近似同构的本体匹配方法。该方法对现有本体匹配方法进行扩展,综合编辑距离、层次关系等特征,计算本体的结构级相似性,以点、边有序交替匹配来判断实体的有向图近似同构问题,实现本体匹配判定。演示算法处理过程,给出算法时间复杂度理论分析,说明其有效性。 展开更多
关键词 本体匹配 e—learning学习资源本体 子图同构 时间复杂性
在线阅读 下载PDF
基于经验回放Q-Learning的最优控制算法 被引量:6
6
作者 黄小燕 《计算机工程与设计》 北大核心 2017年第5期1352-1355,1365,共5页
针对实时系统的在线最优控制策略学计算开销高的缺点,提出基于经验回放和Q-Learning的最优控制算法。采用经验回放(experience replay,ER)对样本进行重复利用,弥补实时系统在线获取样本少的不足;通过Q-Learning算法并采用梯度下降方法... 针对实时系统的在线最优控制策略学计算开销高的缺点,提出基于经验回放和Q-Learning的最优控制算法。采用经验回放(experience replay,ER)对样本进行重复利用,弥补实时系统在线获取样本少的不足;通过Q-Learning算法并采用梯度下降方法对值函数参数向量进行更新;定义基于经验回放和Q-Learning的ER-Q-Learning算法,分析其计算复杂度。仿真结果表明,相比Q-Learning算法、Sarsa算法以及批量的BLSPI算法,ER-Q-Learning算法能在有限时间内平衡更多时间步,具有最快的收敛速度。 展开更多
关键词 控制策略 经验回放 Q学习 实时系统 样本
在线阅读 下载PDF
基于TimeGAN-Stacking的风电机组变桨系统故障诊断方法
7
作者 潘美琪 贺兴 《太阳能学报》 北大核心 2025年第1期192-200,共9页
风电机组变桨系统的少量不均衡故障样本难以训练基于数据驱动的故障诊断模型,导致监测系统常常漏报或误报故障。针对上述问题,提出一种基于TimeGAN-Stacking的风电机组变桨系统故障诊断方法。在数据层面,由于原始样本类别不平衡,基于时... 风电机组变桨系统的少量不均衡故障样本难以训练基于数据驱动的故障诊断模型,导致监测系统常常漏报或误报故障。针对上述问题,提出一种基于TimeGAN-Stacking的风电机组变桨系统故障诊断方法。在数据层面,由于原始样本类别不平衡,基于时序生成对抗网络(TimeGAN)跟踪风电机组运行数据逐步概率分布的动态变化特征,同时优化生成样本的全局分布与局部分布,有效平衡且扩容风电机组多种故障综合样本集;在模型层面,建立Stacking集成模型,融合多个故障诊断器的优势,进一步提高故障诊断能力。最后,基于实际风场数据对所提方法进行测试,结果表明,所提出的TimeGAN-Stacking故障识别方法可有效诊断4种变桨故障。 展开更多
关键词 风电机组 数据挖掘 故障分析 深度学习 时序生成对抗网络 样本增强
在线阅读 下载PDF
基于Q-learning的飞行自组织网络QoS路由方法 被引量:6
8
作者 黄鑫陈 陈光祖 +2 位作者 郑敏 谭冲 刘洪 《中国科学院大学学报(中英文)》 CSCD 北大核心 2022年第1期134-143,共10页
针对无人机自组网等高动态飞行自组织网络中,网络拓扑的快速变化导致通信链路断裂和路由重建频繁的问题,研究一种基于Q-learning的QoS(quality of service)路由方法。该方法以Q-learning强化学习框架为基础,将邻居节点数量、链路持续时... 针对无人机自组网等高动态飞行自组织网络中,网络拓扑的快速变化导致通信链路断裂和路由重建频繁的问题,研究一种基于Q-learning的QoS(quality of service)路由方法。该方法以Q-learning强化学习框架为基础,将邻居节点数量、链路持续时间和链路可用带宽作为路由度量信息,设计一种提供QoS保证的Q-learning奖励函数。网络节点通过广播Hello消息交互各自的本地路由度量信息,邻居节点接收到Hello分组或者数据分组,根据奖励函数计算并更新Q值,待转发数据分组的节点根据其维护的Q值表智能选择下一跳转发节点。EXata无线网络仿真环境中的仿真结果表明,该方法能为高动态飞行自组织网络中的数据传输提供稳定性好、服务质量高的通信链路。 展开更多
关键词 飞行自组网 QOS路由 Q-learning 链路可用带宽 链路持续时间
在线阅读 下载PDF
Q-learning强化学习制导律 被引量:30
9
作者 张秦浩 敖百强 张秦雪 《系统工程与电子技术》 EI CSCD 北大核心 2020年第2期414-419,共6页
在未来的战场中,智能导弹将成为精确有效的打击武器,导弹智能化已成为一种主要的发展趋势。本文以传统的比例制导律为基础,提出基于强化学习的变比例系数制导算法。该算法以视线转率作为状态,依据脱靶量设计奖励函数,并设计离散化的行... 在未来的战场中,智能导弹将成为精确有效的打击武器,导弹智能化已成为一种主要的发展趋势。本文以传统的比例制导律为基础,提出基于强化学习的变比例系数制导算法。该算法以视线转率作为状态,依据脱靶量设计奖励函数,并设计离散化的行为空间,为导弹选择正确的制导指令。实验仿真验证了所提算法比传统的比例制导律拥有更好的制导精度,并使导弹拥有了自主决策能力。 展开更多
关键词 比例制导 制导律 脱靶量 机动目标 强化学习 Q学习 时序差分算法
在线阅读 下载PDF
港口集装箱装卸作业的Q-learning动态定价策略研究 被引量:3
10
作者 余珏 丁一 林国龙 《计算机应用与软件》 北大核心 2018年第12期123-130,221,共9页
港口企业在复杂的竞争环境中,需要应对不同船公司的需求制定合理的动态定价策略。使用滑动窗口方法,根据船公司减少作业时间的要求,计算出单船装卸作业时间的预期估计误差。运用TDABC(time-driven activity-based costing)方法分析码头... 港口企业在复杂的竞争环境中,需要应对不同船公司的需求制定合理的动态定价策略。使用滑动窗口方法,根据船公司减少作业时间的要求,计算出单船装卸作业时间的预期估计误差。运用TDABC(time-driven activity-based costing)方法分析码头作业成本,得出单船装卸作业的总成本。采用Q-learning算法得出以最大化单船装卸利润为主要目标,不同箱型下的动态定价策略。基于上海港实际数据分析表明:折扣因子从0. 1增加至0. 7时单船装卸利润增加至352. 77万元,从0. 7至0. 9时降至159. 89万元。相同学习率下,当单船装卸作业时间从10. 5小时减少至9小时,单船装卸利润波动明显。算例分析表明,该动态定价策略有助于港口企业的经济发展,能有效提高其竞争力。 展开更多
关键词 港口 单船装卸作业时间 动态定价 Q-learning TDABC
在线阅读 下载PDF
基于Q-learning的离散时间多智能体系统一致性 被引量:8
11
作者 朱志斌 王付永 +2 位作者 尹艳辉 刘忠信 陈增强 《控制理论与应用》 EI CAS CSCD 北大核心 2021年第7期997-1005,共9页
针对模型未知的一类离散时间多智能体系统,本文提出了一种Q-learning方法实现多智能体系统的一致性控制.该方法不依赖于系统模型,能够利用系统数据迭代求解出可使给定目标函数最小的控制律,使所有智能体的状态实现一致.通过各个智能体... 针对模型未知的一类离散时间多智能体系统,本文提出了一种Q-learning方法实现多智能体系统的一致性控制.该方法不依赖于系统模型,能够利用系统数据迭代求解出可使给定目标函数最小的控制律,使所有智能体的状态实现一致.通过各个智能体所产生的系统数据,采用策略迭代的方法实时更新求解得到多智能体系统的控制律,并对所提Q-learning方法进行了收敛性和稳定性分析.最后,论文给出了计算机仿真验证了所提方法的有效性. 展开更多
关键词 多智能体系统 一致性 离散时间 Q-learning
在线阅读 下载PDF
Radar emitter signal recognition method based on improved collaborative semi-supervised learning 被引量:1
12
作者 JIN Tao ZHANG Xindong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1182-1190,共9页
Rare labeled data are difficult to recognize by using conventional methods in the process of radar emitter recogni-tion.To solve this problem,an optimized cooperative semi-supervised learning radar emitter recognition... Rare labeled data are difficult to recognize by using conventional methods in the process of radar emitter recogni-tion.To solve this problem,an optimized cooperative semi-supervised learning radar emitter recognition method based on a small amount of labeled data is developed.First,a small amount of labeled data are randomly sampled by using the bootstrap method,loss functions for three common deep learning net-works are improved,the uniform distribution and cross-entropy function are combined to reduce the overconfidence of softmax classification.Subsequently,the dataset obtained after sam-pling is adopted to train three improved networks so as to build the initial model.In addition,the unlabeled data are preliminarily screened through dynamic time warping(DTW)and then input into the initial model trained previously for judgment.If the judg-ment results of two or more networks are consistent,the unla-beled data are labeled and put into the labeled data set.Lastly,the three network models are input into the labeled dataset for training,and the final model is built.As revealed by the simula-tion results,the semi-supervised learning method adopted in this paper is capable of exploiting a small amount of labeled data and basically achieving the accuracy of labeled data recognition. 展开更多
关键词 emitter signal identification time series BOOTSTRAP semi supervised learning cross entropy function homogeniza-tion dynamic time warping(DTW)
在线阅读 下载PDF
基于互信息和Just-in-Time优化的回声状态网络 被引量:7
13
作者 张衡 王河山 《郑州大学学报(工学版)》 CAS 北大核心 2017年第5期1-6,共6页
为了提高回声状态网络(ESN)的适应性,提出基于互信息(MI)和Just-in-Time(JIT)的优化方法,对ESN的输入伸缩参数以及输出层进行优化,所得网络称为MI-JIT-ESN.ESN的优化方法分为两部分:一是基于网络输入与输出之间的互信息,对网络的多个输... 为了提高回声状态网络(ESN)的适应性,提出基于互信息(MI)和Just-in-Time(JIT)的优化方法,对ESN的输入伸缩参数以及输出层进行优化,所得网络称为MI-JIT-ESN.ESN的优化方法分为两部分:一是基于网络输入与输出之间的互信息,对网络的多个输入伸缩参数进行调整;二是基于JIT优化的局部输出层,对ESN的隐层输出数据进行局部重新建模,从而提升ESN输出层的回归拟合精度.将MI-JIT-ESN应用于青霉素补料分批发酵过程建模.结果显示,MI-JIT优化方法能提高模型的适应性,并优于其他比较方法. 展开更多
关键词 回声状态网络 互信息 JUST-IN-time 优化 建模 青霉素发酵
在线阅读 下载PDF
基于Attention机制改进TimeGAN的小样本时间序列预测方法 被引量:5
14
作者 黄开远 罗娜 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第6期890-899,共10页
利用深度学习进行时间序列预测时所表现出的优越性能在很大程度上得益于数量庞大的训练样本。然而,实际过程中普遍存在数据难以收集而无法准确建模的问题。为了解决时间序列预测中的小样本问题,本文提出了一种基于注意力机制并融合时间... 利用深度学习进行时间序列预测时所表现出的优越性能在很大程度上得益于数量庞大的训练样本。然而,实际过程中普遍存在数据难以收集而无法准确建模的问题。为了解决时间序列预测中的小样本问题,本文提出了一种基于注意力机制并融合时间卷积网络与长短期记忆网络的数据增强网络(ATCLSTM-TimeGAN),通过在时间序列过程生成对抗网络(TimeGAN)中加入Soft-Attention机制来解决其动态信息丢失的问题。针对生成器的输入一般为随机向量,采用时间卷积结构与Self-Attention机制融合,获得更好的数据生成效果。为了验证生成数据的真实性与有用性,比较了不同的数据增强方法所生成数据的分布差异以及合成数据用于预测时的预测效果。实验结果表明,相比于其他方法,ATCLSTM-TimeGAN能够更好地覆盖原始数据的分布,有效地降低了小样本下的预测误差。 展开更多
关键词 小样本学习 数据增强 Attention机制 时间序列预测 深度学习
在线阅读 下载PDF
Time series online prediction algorithm based on least squares support vector machine 被引量:8
15
作者 吴琼 刘文颖 杨以涵 《Journal of Central South University of Technology》 EI 2007年第3期442-446,共5页
Deficiencies of applying the traditional least squares support vector machine (LS-SVM) to time series online prediction were specified. According to the kernel function matrix's property and using the recursive cal... Deficiencies of applying the traditional least squares support vector machine (LS-SVM) to time series online prediction were specified. According to the kernel function matrix's property and using the recursive calculation of block matrix, a new time series online prediction algorithm based on improved LS-SVM was proposed. The historical training results were fully utilized and the computing speed of LS-SVM was enhanced. Then, the improved algorithm was applied to timc series online prediction. Based on the operational data provided by the Northwest Power Grid of China, the method was used in the transient stability prediction of electric power system. The results show that, compared with the calculation time of the traditional LS-SVM(75 1 600 ms), that of the proposed method in different time windows is 40-60 ms, proposed method is above 0.8. So the improved method is online prediction. and the prediction accuracy(normalized root mean squared error) of the better than the traditional LS-SVM and more suitable for time series online prediction. 展开更多
关键词 time series prediction machine learning support vector machine statistical learning theory
在线阅读 下载PDF
A New Discrete-time Adaptive ILC for Nonlinear Systems with Time-varying Parametric Uncertainties 被引量:8
16
作者 CHI Rong-Hu SUI Shu-Lin HOU Zhong-Sheng 《自动化学报》 EI CSCD 北大核心 2008年第7期805-808,共4页
用在分离时间轴和反复的学习轴之间的类比,一条新分离时间的适应反复的学习控制(AILC ) 途径被开发与变化时间的参量的无常探讨非线性的系统的一个班。类似于适应控制,新 AILC 能合并一个设计算法,因此,学习获得能沿着学习的轴反复... 用在分离时间轴和反复的学习轴之间的类比,一条新分离时间的适应反复的学习控制(AILC ) 途径被开发与变化时间的参量的无常探讨非线性的系统的一个班。类似于适应控制,新 AILC 能合并一个设计算法,因此,学习获得能沿着学习的轴反复地被调节。当起始的状态是随机的,参考轨道是变化重复的时,新 AILC 能沿着反复的学习轴 asymptotically 在有限时间间隔上完成 pointwise 集中。 展开更多
关键词 自动化技术 智能系统 非线性系统 离散时间系统 不确定性
在线阅读 下载PDF
On-Line Real Time Realization and Application of Adaptive Fuzzy Inference Neural Network
17
作者 Han, Jianguo Guo, Junchao Zhao, Qian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第1期67-74,共8页
In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and... In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and applying them to separate identification of nonlinear multi-variable systems is introduced and discussed. 展开更多
关键词 Fuzzy control Identification (control systems) Inference engines learning algorithms Mathematical models Multivariable control systems Neural networks Nonlinear control systems Real time systems
在线阅读 下载PDF
基于Transformer模型的时序数据预测方法综述 被引量:7
18
作者 孟祥福 石皓源 《计算机科学与探索》 北大核心 2025年第1期45-64,共20页
时序数据预测(TSF)是指通过分析历史数据的趋势性、季节性等潜在信息,预测未来时间点或时间段的数值和趋势。时序数据由传感器生成,在金融、医疗、能源、交通、气象等众多领域都发挥着重要作用。随着物联网传感器的发展,海量的时序数据... 时序数据预测(TSF)是指通过分析历史数据的趋势性、季节性等潜在信息,预测未来时间点或时间段的数值和趋势。时序数据由传感器生成,在金融、医疗、能源、交通、气象等众多领域都发挥着重要作用。随着物联网传感器的发展,海量的时序数据难以使用传统的机器学习解决,而Transformer在自然语言处理和计算机视觉等领域的诸多任务表现优秀,学者们利用Transformer模型有效捕获长期依赖关系,使得时序数据预测任务取得了飞速发展。综述了基于Transformer模型的时序数据预测方法,按时间梳理了时序数据预测的发展进程,系统介绍了时序数据预处理过程和方法,介绍了常用的时序预测评价指标和数据集。以算法框架为研究内容系统阐述了基于Transformer的各类模型在TSF任务中的应用方法和工作原理。通过实验对比了各个模型的性能、优点和局限性,并对实验结果展开了分析与讨论。结合Transformer模型在时序数据预测任务中现有工作存在的挑战提出了该方向未来发展趋势。 展开更多
关键词 深度学习 时序数据预测 数据预处理 Transformer模型
在线阅读 下载PDF
基于Transformer的时间序列预测方法综述 被引量:1
19
作者 陈嘉俊 刘波 +2 位作者 林伟伟 郑剑文 谢家晨 《计算机科学》 北大核心 2025年第6期96-105,共10页
时间序列预测作为分析历史数据以预测未来趋势的关键技术,已广泛应用于金融、气象等领域。然而,传统方法如自回归移动平均模型和指数平滑法等在处理非线性模式、捕捉长期依赖性时存在局限。最近,基于Transformer的方法因其自注意力机制... 时间序列预测作为分析历史数据以预测未来趋势的关键技术,已广泛应用于金融、气象等领域。然而,传统方法如自回归移动平均模型和指数平滑法等在处理非线性模式、捕捉长期依赖性时存在局限。最近,基于Transformer的方法因其自注意力机制,在自然语言处理与计算机视觉领域取得突破,也开始拓展至时间序列预测领域并取得显著成果。因此,探究如何将Transformer高效运用于时间序列预测,成为推动该领域发展的关键。首先,介绍了时间序列的特性,阐述了时间序列预测的常见任务类别及评估指标。接着,深入解析Transformer的基本架构,并挑选了近年来在时间序列预测中广受关注的Transfo-rmer衍生模型,从模块及架构层面进行分类,并分别从问题解决、创新点及局限性3个维度进行比较和分析。最后,进一步探讨了时间序列预测Transformer在未来可能的研究方向。 展开更多
关键词 时间序列 Transformer模型 深度学习 注意力机制 预测
在线阅读 下载PDF
深度学习赋能波束管理:现状、挑战与机遇 被引量:2
20
作者 王昭诚 马可 《中山大学学报(自然科学版)(中英文)》 CAS 北大核心 2025年第1期40-50,共11页
随着载波频率的不断提高和大规模天线阵列的广泛部署,基于模拟移相器的波束赋形成为下一代无线通信的标志性技术之一。此时,波束管理被用于获取和维护基站和用户端具有最大接收功率的最优波束对,以保障可靠的无线通信服务。传统波束管... 随着载波频率的不断提高和大规模天线阵列的广泛部署,基于模拟移相器的波束赋形成为下一代无线通信的标志性技术之一。此时,波束管理被用于获取和维护基站和用户端具有最大接收功率的最优波束对,以保障可靠的无线通信服务。传统波束管理方法往往依赖于海量搜索。同时,传统数学模型无法全面的、准确刻画非线性的波束的内在关联和高维无线环境特征,因而难以取得令人满意的波束增益性能。近年来,得益于深度学习强大的自适应拟合能力,深度学习赋能波束管理得到了国内外广泛关注。本文总结了深度学习赋能波束管理的研究进展,并展望了未来的研究方向。首先,阐述了深度学习应用于波束管理的典型场景和潜在优势;随后,从空/时/频域切入,讨论当前深度学习赋能波束管理的主要研究路线和代表性工作;最后,面向更大规模的无线网络、更多元的波束管理功能和更鲁棒的深度学习模型,阐述未来的研究挑战与机遇。 展开更多
关键词 深度学习 波束管理 空域 时域 频域
在线阅读 下载PDF
上一页 1 2 83 下一页 到第
使用帮助 返回顶部